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Chapter

Overview

FiPy is an object oriented, partial differential equation (PDE) solver, written in Python, based on a standard finite vol-
ume (FV) approach. The framework has been developed in the Materials Science and Engineering Division (MSED)
and Center for Theoretical and Computational Materials Science (CTCMS), in the Material Measurement Laboratory
(MML) at the National Institute of Standards and Technology (NIST).

The solution of coupled sets of PDEs is ubiquitous to the numerical simulation of science problems. Numerous PDE
solvers exist, using a variety of languages and numerical approaches. Many are proprietary, expensive and difficult
to customize. As a result, scientists spend considerable resources repeatedly developing limited tools for specific
problems. Our approach, combining the FV method and Python, provides a tool that is extensible, powerful and freely
available. A significant advantage to Python is the existing suite of tools for array calculations, sparse matrices and
data rendering.

The FiPy framework includes terms for transient diffusion, convection and standard sources, enabling the solution of
arbitrary combinations of coupled elliptic, hyperbolic and parabolic PDEs. Currently implemented models include
phase field [3] [4] [5] treatments of polycrystalline, dendritic, and electrochemical phase transformations, as well as
drug eluting stents [6], reactive wetting [7], photovoltaics [8] and a level set treatment of the electrodeposition process

[9].

The latest information about FiPy can be found at http://www.ctcms.nist.gov/fipy/.

1.1 Even if you don’t read manuals...

...please read Installation, Using  FiPy and  Frequently  Asked  Questions, as well as
examples.diffusion.meshlD.

1.2 What’s new in version 3.1?

The significant changes since version 3.0 are:

 Level sets are now handled by LSMLIB or Scikit-fmm solver libraries. These libraries are orders of magnitude
faster than the original, Python-only prototype.

e The Matplotlib st reamplot () function can be used to display vector fields.

* Version control was switched to the Git distributed version control system. This system should make it much
easier for FiPy users to participate in development.

Tickets fixed in this release:

62 "Move 'ImplicitDiffusionTerm().solve(var) == 0’ ""failure"" from examples.phase.simple to example
118 subscriber () ._markStale () AttributeError
138 ‘numerix.dot‘ doesn’t support tensors
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http://www.nist.gov/mml/
http://www.nist.gov/
http://www.ctcms.nist.gov/fipy/
http://git-scm.com/
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143 "Trying to ""solve"" an integer ‘CellVariable‘ should raise an error"
195 broken arithmetic face to cell distance calculations

197 ~binOp doesn’t work on branches/version-2_0

305 add rhie chow correction term in stokes cavity example

321 Windows interactive plotting mostly broken

324 —--pysparse configuration should never attempt MPI imports

341 Fix fipy.terms._BinaryTerm test failure in parallel

365 Rename GridXD

368 Error adding meshes

370 Epetra Norm2 failure in parallel

383 move FiPy to distributed version control

385 ‘diffusionTerm._test () ' requires PySparse

391 efficiency_test chokes on liquidVapor2D.py

432 LSMLIB refactor

441 Explicit convetion terms should fail when the equation has no TransientTerm (dt=None)
445 getFaceCenters () should return a FaceVariable

448 Gmsh2D does not respect background mesh

452 Gmsh background mesh doesn’t work in parallel

453 faceValue as FaceCenters gives inline failures

454 Assorted errors

456 Web page links seem to be broken

457 Make the citation links go to the DOI links

460 Clean up interaction between dependencies and installation process
461 SvnToGit clean up

462 Fix for test failures on loki

465 sign issues for equation with transient, convection and implicit terms
466 "multiplying equation by ""x"" changes the solution"

469 text in source:trunk/examples/convection/source.py is out of date

470 Include mailing list activity frame on front page

473 Gmsh importer can’t read mesh elements with no tags

475 getVersion() fails on Py3k

477 Update Ohloh to point at git repo

480 link to mailing list is wrong

481 constrain should return a handle to the constraint for later deletion
484 NIST CSS changed

486 Using ‘Popen(’gmsh ...’, shell=True)‘ rather than ‘shell=False‘' security danger
490 Parallel bug in non-uniform grids and conflicting mesh class and factory function names
491 Rename communicator instances

492 unOps can’t be pickled

493 Change documentation to promote use of stackoverflow

494 Viewers don’t inline well in IPython notebook

496 FIPY_DISPLAY_MATRIX is broken

497 examples/phase/binary.py has problems

513 convection problem with cylindrical grid

539 Bug with numpy 1.7.0

557 NumPy 1.7.0 doesn’t have _formatInteger

564 VanLeerConvectionTerm MinMod slope limiter is broken

638 numpy 1.7.1 test failures with physicalField.py

639 Neumann boundary conditions not clearly documented

641 Add support for Matplotlib streamplot

648 Peclet inequalities have the wrong sign

650 CylindricalNonUniformGrid2D doesn’t make a FaceVariable for exteriorFaces
652 Documentation change for Ubuntu install

653 enable google analytics

654 Switch to sphinxcontrib-bibtex

655 Home page needs out-of-NIST redirects
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Warning: FiPy 3 brought unavoidable syntax changes from FiPy 2. Please see
examples.updating.update2_0to3_0 for guidance on the changes that you will need to make to
your FiPy 2.x scripts.

1.3 Download and Installation

Please refer to Installation for details on download and installation. FiPy can be redistributed and/or modified freely,
provided that any derivative works bear some notice that they are derived from it, and any modified versions bear some
notice that they have been modified.

1.4 Support

You can communicate with the FiPy developers and with other users via our mailing list and we welcome you to use the
tracking system for bugs, support requests, feature requests and patch submissions <http://matforge.org/fipy/report>.
We also monitor StackOverflow for questions tagged with “fipy”’. We welcome collaborative efforts on this project.

FiPy is a member of MatForge, a project of the Materials Digital Library Pathway. This National Science Foundation
funded service provides management of our public source code repository, our bug tracking system, and a “wiki”
space for public contributions of code snippets, discussions, and tutorials.

1.4.1 Mailing List
In order to discuss FiPy with other users and with the developers, we encourage you to sign up for the mailing list by
sending a subscription email:

To: fipy-request@nist.gov

Subject: (optional)

Body: subscribe

Once you are subscribed, you can post messages to the list simply by addressing email to mailto:fipy @nist.gov.
If you are new to mailing lists, you may want to read the following resource about asking effective questions:
http://www.catb.org/~esr/faqs/smart-questions.html

To get off the list follow the instructions above, but place unsubscribe in the text body.

Send help in the text body to learn other mailing list configurations you can change.

List Archive

http://dir.gmane.org/gmane.comp.python.fipy

The mailing list archive is hosted by GMANE. Any mail sent to fipy @nist.gov will appear in this publicly available
archive.

1.5 Conventions and Notation

FiPy is driven by Python script files than you can view or modify in any text editor. FiPy sessions are invoked from a
command-line shell, such as tesh or bash.

1.3. Download and Installation 5
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Throughout, text to be typed at the keyboard will appear 1ike this. Commands to be issued from an interactive
shell will appear:

$ like this

where you would enter the text (“1ike this”) following the shell prompt, denoted by “$”.

Text blocks of the form:

>>> a = 3 x 4
>>> a

12

>>> if a == 12:

print "a is twelve"
a is twelve

are intended to indicate an interactive session in the Python interpreter. We will refer to these as “interactive sessions”
or as “doctest blocks”. The text “>>>" at the beginning of a line denotes the primary prompt, calling for input of a
Python command. The text ““. . .” denotes the secondary prompt, which calls for input that continues from the line
above, when required by Python syntax. All remaining lines, which begin at the left margin, denote output from the
Python interpreter. In all cases, the prompt is supplied by the Python interpreter and should not be typed by you.

Warning: Pyrhon is sensitive to indentation and care should be taken to enter text exactly as it appears in the
examples.

When references are made to file system paths, it is assumed that the current working directory is the FiPy distribution
directory, refered to as the “base directory”, such that:

examples/diffusion/steadyState/meshlD.py

will correspond to, e.g.:

/some/where/FiPy-X.Y/examples/diffusion/steadyState/meshlD.py

Paths will always be rendered using POSIX conventions (path elements separated by ““/””). Any references of the form:

examples.diffusion.steadyState.meshlD

are in the Python module notation and correspond to the equivalent POSIX path given above.

We may at times use a

Note: to indicate something that may be of interest

or a

Warning: to indicate something that could cause serious problems.
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Chapter

Installation

The FiPy finite volume PDE solver relies on several third-party packages. It is best to obtain and install those first
before attempting to install 77Py. This document explains how to install FiPy, not how to use it. See Using FiPy for
details on how to use FiPy.

Note: It may be useful to set up a Development Environment before beginning the installation process.

2.1 Installing Python Packages

In general, it is best to use the following order of precedence when installing packages:
 Use the operating system package manager, if possible.
 Use the pip installs python (pip) tool to obtain software from the Python Package Index (PyPI) repository:

$ pip install package

Warning: pip takes care of dependencies that are themselves Python packages. It does not deal with
non-Python dependencies.

* Download the packages manually, unpack and run:

$ python setup.py install

Further information about each setup . py script is available by typing:

$ python setup.py --help

Many of the packages listed below have prebuilt installers for different platforms (particularly for Windows). These
installers can save considerable time and effort compared to configuring and building from source, although they
frequently comprise somewhat older versions of the respective code. Whether building from source or using a
prebuilt installer, please read and follow explicitly any instructions given in the respective packages’ README and
INSTALLATION files.

2.2 Obtaining FiPy

FiPy is  freely available for download via Git or as a compressed archive from
<http://www.ctcms.nist.gov/fipy/download>. Please see Git usage for instructions on obtaining FiPy with Git.

Warning: Keep in mind that if you choose to download the compressed archive you will then need to preserve
your changes when upgrades to FiPy become available (upgrades via Git will handle this issue automatically).



http://www.pip-installer.org/
http://pypi.python.org/pypi
http://matforge.org/fipy/browserfipy
http://www.ctcms.nist.gov/fipy/download
http://matforge.org/fipy/browserfipy
http://www.ctcms.nist.gov/fipy/download/
http://matforge.org/fipy/browserfipy
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2.3 Installing FiPy

Details of the Required Packages and links are given below and in platform-specific instructions, but for the courageous
and the impatient, FiPy can be up and running quickly by simply installing the following prerequisite packages on your
system:

* Python

¢ NumPy

¢ At least one of the Solvers

* At least one of the Viewers (FiPy*s tests will run without a viewer, but you’ll want one for any practical work)

Other Optional Packages add greatly to FiPy‘s capabilities, but are not necessary for an initial installation or to simply
run the test suite.

It is not necessary to formally install FiPy, but if you wish to do so and you are confident that all of the requisite
packages have been installed properly, you can install it by typing:

$ pip install fipy

or by unpacking the archive and typing:

$ python setup.py install

at the command line in the base FiPy directory. You can also install FiPy in “development mode” by typing:

$ python setup.py develop

which allows the source code to be altered in place and executed without issuing further installation commands.

Alternatively, you may choose not to formally install FiPy and to simply work within the base directory instead. In this
case or if you are making a non-standard install (without admin privileges), read about setting up your Development
Environment before beginning the installation process.

2.4 Required Packages

2.4.1 Python

http://www.python.org/

FiPy is written in the Python language and requires a Python installation to run. Python comes pre-installed on many
operating systems, which you can check by opening a terminal and typing python, e.g.:

$ python
Python 2.3 (#1, Sep 13 2003, 00:49:11)

Type "help", "copyright", "credits" or "license" for more information.
>>>

If necessary, you can download and install it for your platform <http://www.python.org/download>.

Note: FiPyrequires at least version 2.4.x of Python. See the specialized instructions if you wish to RunUnderPythons.

Python along with many of FiPy‘s required and optional packages is available with one of the following distributions.
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Enthought Python Distribution

http://www.enthought.com/epd

This installer provides a very large number of useful scientific packages for Python, including NumPy, SciPy, Mat-
plotlib, Mayavi, and IPython, as well as a Python interpreter. Installers are available for Windows, Mac OS X and
RedHat Linux, Solaris, Ubuntu Linux, and OpenSuSE Linux.

Attention: PySparse and FiPy are not presently included in EPD, so you will need to separately install them
manually.

Python(x,y)

http://www.pythonxy.com/

Another comprehensive Python package installer for scientific applications, presently only available for Windows.

Attention: PySparse and FiPy are not presently included in python(x,y), so you will need to separately install
them manually.

2.4.2 NumPy

http://numpy.scipy.org
Obtain and install the NumPy package. FiPy requires at least version 1.0 of NumPy.

2.5 Optional Packages

2.5.1 Gmsh

http://www.geuz.org/gmsh/

Gmsh is an application that allows the creation of irregular meshes.

2.5.2 SciPy

http://www.scipy.org/

SciPy provides a large collection of functions and tools that can be useful for running and analyzing FiPy simula-
tions. Significantly improved performance has been achieved with the judicious use of C language inlining (see the
Command-line Flags and Environment Variables section for more details), via the scipy.weave module.

2.6 Level Set Packages

To use the level set components of FiPy one of the following is required.

2.5. Optional Packages 9
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2.6.1 Scikit-fmm

http://packages.python.org/scikit-fmm/

Scikit-fmm is a python extension module which implements the fast marching method.

2.6.2 LSMLIB

http://ktchu.serendipityresearch.org/software/Ismlib/index.html

The Level Set Method Library (LSMLIB) provides support for the serial and parallel simulation of implicit surface
and curve dynamics in two- and three-dimensions.

Install LSMLIB as per the instructions on the website. Additionally PyLSMLIB is required. To install, follow the
instructions on the website, https://github.com/ktchu/LSMLIB/tree/master/pylsmlib#pylsmlib.

2.7 Platform-Specific Instructions

FiPy is tested regularly on Mac OS X, Debian Linux, Ubuntu Linux, and Windows XP. We welcome reports of
compatibility with other systems, particularly if any additional steps are necessary to install (see Miscellaneous Build
Recipes for user contributed installation tips).

The only elements of FiPy that are likely to be platform-dependent are the Viewers but at least one viewer should work
on each platform. All other aspects should function on any platform that has a recent Python installation.

2.7.1 Mac OS X Installation

There is no official package manager for Mac OS X, but there are several third-party package managers that provide
many, but not all of FiPy‘s Required Packages and Optional Packages. Options include

Fink is based on the Debian package management system. It installs all of its dependencies into / sw.

MacPorts is a package manager originally part of OpenDarwin. It installs all of its dependencies into
/opt.

Homebrew is a recent, lightweight package manager based on Ruby scripts. It installs all of its depen-
dencies into /usr/local (although it can be directed not to).

In addition, there is an Enthought Python Distribution installer for Mac OS X.

Attention: PySparse and FiPy are not presently included in any of these package managers or installers, so you
will need to separately install them manually.

We presently find that the combination of Homebrew and pip is a pretty straightforward way to get most of FiPy‘s
prerequesites. See the Miscellaneous Build Recipes for up-to-date directions.

2.7.2 Windows Installation

There is no official package manager for Windows, but the Enthought Python Distribution and Python(x,y) installers
provide most of FiPy‘s prerequisites.

Attention: PySparse and FiPy are not presently included in EPD or python(x,y), so you will need to separately
install them manually.
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2.7.3 Ubuntu/Debian Installation

FiPy now has a .deb for Ubuntu/Debian systems that can be downloaded from
<http://www.ctcms.nist.gov/fipy/download>. Simply run:

VERSION=x.y-z # choose the version you want

apt—-get install gmsh libsuperlu3 python-central python-sparse

curl -0 http://www.ctcms.nist.gov/fipy/download/python-fipy_S${VERSION}_all.deb
dpkg -i python-fipy_ ${VERSION}_all.deb

v W A

to install. The .deb includes dependencies for all of the Required Packages and Optional Packages.

2.7.4 Miscellaneous Build Recipes
We often post miscellaneous installation instructions on the FiPy blog and wiki pages. The most useful of these
include:

¢ Installing FiPy on Mac OS X using Homebrew

* Building a 64-bit scientific python environment for FiPy from source

* Installing FiPy with pip

Note: We encourange you to contribute your own build recipes on the wiki if they are significantly different.

2.8 Development Environment

It is often preferable to not formally install packages in the system directories. The reasons for this include:
* developing or altering the package source code,
* trying out a new package along with its dependencies without violating a working system,
* dealing with conflicting packages and dependencies,
* or not having admin privileges.

The simplest way to use a Python package without installing it is to work in the base directory of the unpacked package
and set the PYTHONPATH environment variable to ““.”. In order to work in an directory other than the package’s base
directory, the PYTHONPATH environment variable must be set to “~/path/to/package”. This method of working
is adequate for one package, but quickly becomes unmanageable with multiple Pyrhon packages. In order to manage
multiple packages, it is better to choose a standard location other than the default installation path.

If you do not have administrative privileges on your computer, or if for any reason you don’t want to tamper with your
existing Python installation, most packages (including FiPy) will allow you to install to an alternative location. Instead
of installing these packages with python setup.py install,youwoulduse python setup.py install
——home=dir, where di r is the desired installation directory (usually “~” to indicate your home directory). You will
then need to append dir/1lib/python to your PYTHONPATH environment variable. See the Alternate Installation
section of the Python document “Installing Python Modules” [1] for more information, such as circumstances in which
you should use ——prefix instead of ——home.

An alternative to setting the PYTHONPATH is to employ one of the utilities that manage packages and their dependen-
cies independently of the system package manager and the system directories. These utilities include Stow, Virtualenv
and zc.buildout, amongst others. Here we’ll describe the use of Virtualenv, which we highly recommend.
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2.8.1 Virtualenv

http://pypi.python.org/pypi/virtualenv

Virtualenv enables the installation of packages in multiple isolated environments. It organizes the installation of
Python packages especially well and also provides a handy location for installing non-Python packages. In addition
Virtualenv works seamlessly with the PyPI package manager (pip).

The utility of Virtualenv is significantly augmented with Virtualenvwrapper.

In general, the initial installation of Virtualenv and Virtualenvwrapper requires admin privileges, but thereafter, creat-
ing new virtual environments and installing packages into them does not require admin privileges.

2.9 Git usage

All stages of FiPy development are archived in a Git repository at MatForge. You can browse through the code
at http://matforge.org/fipy/browser/fipy and, using a Git client, you can download various tagged revisions of FiPy
depending on your needs.

Attention: Be sure to follow /nstallation to obtain all the prerequisites for FiPy.

2.9.1 Git client

A git client application is needed in order to fetch files from our repository. This is provided on many operating
systems (try executing which git) but needs to be installed on many others. The sources to build Git, as well as
links to various pre-built binaries for different platforms, can be obtained from http://git-scm.com/.

2.9.2 Git branches

In general, most users will not want to download the very latest state of FiPy, as these files are subject to active
development and may not behave as desired. Most users will not be interested in particular version numbers either, but
instead with the degree of code stability. Different branches are used to indicate different stages of FiPy development.
For the most part, we follow a successful Git branching model. You will need to decide on your own risk tolerance
when deciding which stage of development to track.

A fresh copy of the FiPy source code can be obtained with:

$ git clone git://code.matforge.org/nist/fipy.git

An existing Git checkout of FiPy can be shifted to a different <branch> of development by issuing the command:

$ git checkout <branch>

in the base directory of the working copy. The main branches for FiPy are:

master designates the (ready to) release state of FiPy. This code is stable and should pass all of the tests (or should
be documented that it does not).

develop designates the latest state of code destined for the next release. This code should be stable and pass all
tests, but may be awaiting new features or bug fixes before merging to master and formal release.

Past releases of FiPy are tagged as

version-x_y_z which designates a released version x.y.z. Any released version of FiPy will be designated with a
fixed tag: The current version of FiPy is 3.1.
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Tagged releases can be found with:

$ git tag --list

Any other branches will not generally be of interest to most users.

Note: For some time now, we have done all significant development work on branches, only merged back to
develop when the tests pass successfully. Although we cannot guarantee that develop will never be broken,

you can always check our build status page
http://build.cmi.kent.edu:8010

to find the most recent revision that it is running acceptably.

For those who are interested in learning more about Git, a wide variety of online sources are available, starting with
the official Git website. The Pro Git book [2] is particularly instructive.
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Chapter

Solvers

FiPy requires either PySparse, SciPy or Trilinos to be installed in order to solve linear systems. From our experiences,
FiPy runs most efficiently in serial when PySparse is the linear solver. Trilinos is the most complete of the three solvers
due to its numerous preconditioning and solver capabilities and it also allows FiPy to run in parallel. Although less
efficient than PySparse and less capable than Trilinos, SciPy is a very popular package, widely available and easy to
install. For this reason, SciPy may be the best linear solver choice when first installing and testing FiPy (and it is the
only viable solver under Python 3.x).

FiPy chooses the solver suite based on system availability or based on the user supplied Command-line Flags and
Environment Variables. For example, passing ——no-pysparse:

$ python -c "from fipy import x; print DefaultSolver" —--no-pysparse
<class ’fipy.solvers.trilinos.linearGMRESSolver.LinearGMRESSolver’>

uses a Trilinos solver. Setting FIPY_SOLVERS to scipy:

$ FIPY_SOLVERS=scipy
$ python -c "from fipy import x; print DefaultSolver"
<class ’fipy.solvers.scipy.linearLUSolver.LinearLUSolver’>

uses a SciPy solver. Suite-specific solver classes can also be imported and instantiated overriding any other directives.
For example:

$ python -c "from fipy.solvers.scipy import DefaultSolver; \
> print DefaultSolver" --no-pysparse
<class ’fipy.solvers.scipy.linearLUSolver.LinearLUSolver’>

uses a SciPy solver regardless of the command line argument. In the absence of Command-line Flags and Environment
Variables, FiPy‘s order of precedence when choosing the solver suite for generic solvers is PySparse followed by
Trilinos, PyAMG and SciPy.

3.1 PySparse

http://pysparse.sourceforge.net

PySparse is a fast serial sparse matrix library for Python. It provides several sparse matrix storage formats and
conversion methods. It also implements a number of iterative solvers, preconditioners, and interfaces to efficient
factorization packages. The only requirement to install and use Pysparse is NumPy.

Warning: FiPy requires version 1.0 or higher of PySparse.
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3.2 SciPy

http://www.scipy.org/

The scipy.sparse module provides a basic set of serial Krylov solvers, but no preconditoners.

3.3 PyAMG

http://code.google.com/p/pyamg/

The PyAMG package provides adaptive multigrid preconditioners that can be used in conjunction with the SciPy
solvers.

3.4 Trilinos

http://trilinos.sandia.gov

Trilinos provides a more complete set of solvers and preconditioners than either PySparse or SciPy. Trilinos precon-
ditioning allows for iterative solutions to some difficult problems that PySparse and SciPy cannot solve, and it enables
parallel execution of FiPy (see Solving in Parallel for more details).

Attention: Be sure to build or install the PyTrilinos interface to Trilinos.

Attention: FiPy runs more efficiently when PySparse is installed alongside Trilinos.

Attention: T7rilinos is a large software suite with its own set of prerequisites, and can be difficult to set up. It is
not necessary for most problems, and is not recommended for a basic install of FiPy.

Trilinos requires cmake, NumPy, and swig. The following are the minimal steps to build and install 7rilinos (with
PyTrilinos) for FiPy:

cd trilinos-X.Y/
SOURCE_DIR="‘pwd"
mkdir BUILD_DIR
cd BUILD_DIR
cmake \
-D CMAKE_BUILD_TYPE:STRING=RELEASE \
Trilinos_ENABLE_PyTrilinos:BOOL=0ON \
-D BUILD_SHARED_LIBS:BOOL=ON \
-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=0ON \
-D TPL_ENABLE_MPI:BOOL=0ON \
-D Trilinos_ENABLE_TESTS:BOOL=0ON \
-D DART_TESTING_TIMEOUT:STRING=600 \
${SOURCE_DIR}
make
make install

wvrvr vV V.V V V V V VXYoo
|
g

Depending on your platform, other options may be helpful or necessary; see the 7rilinos user guide available from
http://trilinos.sandia.gov/documentation.html, or http://trilinos.sandia.gov/packages/pytrilinos/faq.html for more in-
depth documentation.
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Note: Trilinos can be installed in a non-standard location by adding the -D
CMAKE_INSTALL_PREFIX:PATH=S${INSTALL DIR}and-D PyTrilinos_INSTALL_PREFIX:PATH=${INSTALI_DIR

flags to the configure step. If 7rilinos is installed in a non-standard location, the path to the PyTrilinos site-
packages directory should be added to the PYTHONPATH environment variable; this should be of the form
${INSTALI_DIR}/1ib/${PYTHON_VERSION}/site-packages/. Also, the path to the Trilinos 1ib
directory should be added to the LD_LIBRARY_PATH (on Linux) or DYLD_LIBRARY_PATH (on Mac OS X)
environment variable; this should be of the form $ { INSTALL _DIR}/lib*.

3.4.1 mpidpy

http://mpidpy.scipy.org/

For Solving in Parallel, FiPy requires mpi4py, in addition to Trilinos.
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Chapter

Viewers

A viewer is required to see the results of FiPy calculations. Matplotlib is by far the most widely used Python based
viewer and the best choice to get FiPy up and running quickly. Matplotlib is also capable of publication quality plots.
Matplotlib has only rudimentary 3D capability, which FiPy does not attempt to use. Mayavi is required for 3D viewing.

4.1 Matplotlib

http://matplotlib.sourceforge.net

Matplotlib is a Python package that displays publication quality results. It displays both 1D X-Y type plots and
2D contour plots for both structured and unstructured data, but does not display 3D data. It works on all common
platforms.

4.2 Mayavi

http://code.enthought.com/projects/mayavi/

The Mayavi Data Visualizer is a free, easy to use scientific data visualizer. It displays 1D, 2D and 3D data. It is the
only FiPy viewer available for 3D data. Matplotlib is probably a better choice for 1D or 2D viewing.

Mayavi requires VTK, which can be difficult to build from source. Mayavi and VTK can be most easily obtained
through

* the Ubuntu or Debian package managers

* the Enthought Python Edition

* python(x,y)

¢ the Homebrew package manager for Mac OS X (VTK only, not Mayavi)

Note: MayaVi 1 is no longer supported.
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Chapter

Using FiPy

This document explains how to use FiPy in a practical sense. To see the problems that FiPy is capable of solving, you
can run any of the scripts in the examples.

Note: We strongly recommend you proceed through the examples, but at the very least work through
examples.diffusion.meshlD to understand the notation and basic concepts of FiPy.

We exclusively use either the unix command line or /Python to interact with FiPy. The commands in the examples
are written with the assumption that they will be executed from the command line. For instance, from within the main
FiPy directory, you can type:

$ python examples/diffusion/meshlD.py

A viewer should appear and you should be prompted through a series of examples.

Note: From within /Python, you would type:

>>> run examples/diffusion/meshlD.py

In order to customize the examples, or to develop your own scripts, some knowledge of Python syntax is required. We
recommend you familiarize yourself with the excellent Python tutorial [11] or with Dive Into Python [12].

As you gain experience, you may want to browse through the Command-line Flags and Environment Variables that
affect FiPy.

5.1 Testing FiPy

For a general installation, FiPy can be tested by running:

$ python -c "import fipy; fipy.test ()"

This command runs all the test cases in FiPy’s modules, but doesn’t include any of the tests in FiPy’s examples. To
run the test cases in both modules and examples, use:

$ python setup.py test

in an unpacked FiPy archive. The test suite can be run with a number of different configurations depending on which
solver suite is available and other factors. See Command-line Flags and Environment Variables for more details.

FiPy will skip tests that depend on Optional Packages that have not been installed. For example, if Mayavi and Gmsh
are not installed, FiPy will warn:
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Skipped 131 doctest examples because ‘gmsh' cannot be found on the $PATH

Skipped 42 doctest examples because the ‘tvtk' package cannot be imported
BN RN

We have a few known, intermittent failures:

#425 The test suite can freeze, usually in examples.chemotaxis, when running on multiple proces-
sors. This has never affected us in an actual parallel simulation, only in the test suite.

#430 When running in parallel, the tests for _BinaryTerm sometimes return one erroneous result. This
is not reliably reproducible and doesn’t seem to have an effect on actual simulations.

Although the test suite may show warnings, there should be no other errors. Any errors should be investigated or
reported on the tracking system. Users can see if there are any known problems for the latest FiPy distribution by
checking FiPy’s automated test display.

Below are a number of common Command-line Flags for testing various FiPy configurations.

5.1.1 Parallel Tests

If FiPy is configured for Solving in Parallel, you can run the tests on multiple processor cores with:

$ mpirun -np {# of processors} python setup.py test --trilinos

or:

$ mpirun -np {# of processors} python -c "import fipy; fipy.test(’--trilinos’)"

5.2 Command-line Flags and Environment Variables

FiPy chooses a default run time configuration based on the available packages on the system. The Command-line
Flags and Environment Variables sections below describe how to override FiPy‘s default behavior.

5.2.1 Command-line Flags

You can add any of the following case-insensitive flags after the name of a script you call from the command line, e.g:
$ python myFiPyScript —--someflag
——inline

Causes many mathematical operations to be performed in C, rather than Python, for improved performance.
Requires the scipy.weave package.

The following flags take precedence over the FIPY_SOLVERS environment variable:

—--pysparse
Forces the use of the PySparse solvers.

--trilinos
Forces the use of the Trilinos solvers, but uses PySparse to construct the matrices.

—-no-pysparse
Forces the use of the Trilinos solvers without any use of PySparse.

—-—-scipy
Forces the use of the SciPy solvers.
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——pyamg
Forces the use of the PyAMG preconditioners in conjunction with the SciPy solvers.

—=1lsmlib
Forces the use of the LSMLIB level set solver.

——skfmm
Forces the use of the Scikit-fimm level set solver.

5.2.2 Environment Variables

You can set any of the following environment variables in the manner appropriate for your shell. If you are not
running in a shell (e.g., you are invoking FiPy scripts from within /Python or IDLE), you can set these variables via
the os . environ dictionary, but you must do so before importing anything from the f ipy package.

FIPY DISPLAY MATRIX
If present, causes the graphical display of the solution matrix of each equation at each call of solve () or
sweep (). Setting the value to “terms,” causes the display of the matrix for each Term that composes the
equation. Requires the Matplotlib package.

FIPY INLINE
If present, causes many mathematical operations to be performed in C, rather than Python. Requires the
scipy.weave package.

FIPY_ INLINE_COMMENT
If present, causes the addition of a comment showing the Python context that produced a particular piece of
scipy.weave C code. Useful for debugging.

FIPY_SOLVERS
Forces the use of the specified suite of linear solvers. Valid (case-insensitive) choices are “pysparse”,

LEINT3 ELIT3

“trilinos”, “no-pysparse”, “scipy” and “pyamg”.

FIPY_ VERBOSE_SOLVER
If present, causes the linear solvers to print a variety of diagnostic information.

FIPY VIEWER
Forces the use of the specified viewer. Valid values are any <viewer> from the
fipy.viewers.<viewer>Viewer modules. The special value of dummy will allow the script to
run without displaying anything.

FIPY_ INCLUDE_NUMERIX ALL
If present, causes the inclusion of all funcions and variables of the numerix module in the £ipy namespace.

5.3 Solving in Parallel

FiPy can use Trilinos to solve equations in parallel. Most mesh classes in fipy.meshes can solve in parallel. This
includes all “...Grid...” and “...Gmsh...” class meshes. Currently, the only remaining serial-only meshes
are Tri2D and SkewedGrid2D.

Attention: Trilinos must be compiled with MPI support.

Attention: FiPy requires mpi4py to work in parallel. See the mpi4py installation guide.

Note: Parallel efficiency is greatly improved by installing PySparse in addition to Trilinos. If PySparse is not installed
be sure to use the ——no-pysparse flag when running in parallel.
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It should not generally be necessary to change anything in your script. Simply invoke:

$ mpirun -np {# of processors} python myScript.py --trilinos

instead of:

$ python myScript.py

To confirm that FiPy and Trilinos are properly configured to solve in parallel, the easiest way to tell is to run one of
the examples, e.g.,:

$ mpirun -np 2 examples/diffusion/meshlD.py

You should see two viewers open with half the simulation running in one of them and half in the other. If this does not
look right (e.g., you get two viewers, both showing the entire simultion), or if you just want to be sure, you can run a
diagnostic script:

$ mpirun -np 3 python examples/parallel.py

which should print out:

mpidpy: processor 0 of 3 :: PyTrilinos: processor 0 of 3 :: FiPy: 5 cells on processor 0 of 3
mpidpy: processor 1 of 3 :: PyTrilinos: processor 1 of 3 :: FiPy: 7 cells on processor 1 of 3
mpidpy: processor 2 of 3 :: PyTrilinos: processor 2 of 3 :: FiPy: 6 cells on processor 2 of 3

If there is a problem with your parallel environment, it should be clear that there is either a problem importing one of
the required packages or that there is some problem with the MPI environment. For example:

mpidpy: processor 2 of 3 :: PyTrilinos: processor 0 of 1 :: FiPy: 10 cells on processor 0 of 1

[my.machine.com:69815] WARNING: There were 4 Windows created but not freed.

mpidpy: processor 1 of 3 :: PyTrilinos: processor 0 of 1 :: FiPy: 10 cells on processor 0 of 1

[my.machine.com:69814] WARNING: There were 4 Windows created but not freed.

mpidpy: processor 0 of 3 :: PyTrilinos: processor 0 of 1 :: FiPy: 10 cells on processor 0 of 1

[my.machine.com:69813] WARNING: There were 4 Windows created but not freed.

indicates mpi4py is properly communicating with MPI and is running in parallel, but that 7rilinos is not, and is running
three separate serial environments. As a result, FiPy is limited to three separate serial operations, too. In this instance,
the problem is that although 7rilinos was compiled with MPI enabled, it was compiled against a different MPI library
than is currently available (and which mpi4py was compiled against). The solution is to rebuild 7rilinos against the
active MPI libraries.

When solving in parallel, FiPy essentially breaks the problem up into separate sub-domains and solves them (some-
what) independently. FiPy generally “does the right thing”, but if you find that you need to do something with the
entire solution, you can use var.globalValue.

Note: Trilinos solvers frequently give intermediate output that 7Py cannot suppress. The most commonly encoun-
tered messages are

Gen_Prolongator warning : Max eigen <= 0.0 which is not significant to FiPy.

Aztec status AZ_loss: loss of precision which indicates that there was some diffi-
culty in solving the problem to the requested tolerance due to precision limitations, but usually does
not prevent the solver from finding an adequate solution.

Aztec status AZ_ill cond: GMRES hessenberg ill-conditioned which  indi-
cates that GMRES is having trouble with the problem, and may indicate that trying a different
solver or preconditioner may give more accurate results if GMRES fails.
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Aztec status AZ_breakdown: numerical breakdown which usually indicates serious
problems solving the equation which forced the solver to stop before reaching an adequate solu-
tion. Different solvers, different preconditioners, or a less restrictive tolerance may help.

5.4 Meshing with Gmsh

FiPy works with arbitrary polygonal meshes generated by Gmsh. FiPy provides two wrappers classes (Gmsh2D and
Gmsh3D) enabling Gmsh to be used directly from python. The classes can be instantiated with a set of Gmsh style
commands (see examples.diffusion.circle). The classes can also be instantiated with the path to either a
Gmsh geometry file (. geo) or a Gmsh mesh file (.msh) (see examples.diffusion.anisotropy).

As well as meshing arbitrary geometries, Gmsh partitions meshes for parallel simulations. Mesh partitioning automat-
ically occurs whenever a parallel communicator is passed to the mesh on instantiation. This is the default setting for
all meshes that work in parallel including Gmsh2D and Gmsh3D.

Note: FiPy solution accuracy can be compromised with highly non-orthogonal or non-conjunctional meshes.

5.5 Coupled and Vector Equations

Equations can now be coupled together so that the contributions from all the equations appear in a single system
matrix. This results in tighter coupling for equations with spatial and temporal derivatives in more than one variable.
In FiPy equations are coupled together using the & operator:

>>> eqn0 =
>>> egnl = ...
>>> coupledEgn = eqn0 & eqnl

The coupledEgn will use a combined system matrix that includes four quadrants for each of the different variable
and equation combinations. In previous versions of FiPy there has been no need to specify which variable a given
term acts on when generating equations. The variable is simply specified when calling solve or sweep and this
functionality has been maintained in the case of single equations. However, for coupled equations the variable that a
given term operates on now needs to be specified when the equation is generated. The syntax for generating coupled
equations has the form:

>>> eqn0 = Term00 (coeff=..., var=var0) + TermOl (coeff..., var=varl) == sourcel
>>> eqnl = TermlO (coeff=..., var=var0) + Termll (coeff..., var=varl) == sourcel
>>> coupledEgn = eqgn0 & eqnl

and there is now no need to pass any variables when solving:

>>> coupledEgn.solve(dt=..., solver=...)
In this case the matrix system will have the form
( Term00 ‘ TermO1 > < var0 > . < sourcel )
Terml0 | Termll varl /  \ sourcel
FiPy tries to make sensible decisions regarding each term’s location in the matrix and the ordering of the variable

column array. For example, if TermO1 is a transient term then Term01 would appear in the upper left diagonal and
the ordering of the variable column array would be reversed.

The use of coupled equation is described in detail in examples.diffusion.coupled. Other
examples that demonstrate the use of coupled equations are examples.phase.binaryCoupled,
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examples.phase.polyxtalCoupled and examples.cahnHilliard.mesh2DCoupled. As well
as coupling equations, true vector equations can now be written in FiPy (see examples.diffusion.coupled
for more details).

5.6 Boundary Conditions

5.6.1 Applying fixed value (Dirichlet) boundary conditions

To apply a fixed value boundary condition use the constrain () method. For example, to fix var to have a value of
2 along the upper surface of a domain, use

>>> var.constrain (2., where=mesh.facesTop)

Note: The old equivalent FixedValue boundary condition is now deprecated.

5.6.2 Applying fixed gradient boundary conditions (Neumann)

To apply a fixed Gradient boundary condition use the faceGrad.constrain () method. For example, to fix var to
have a gradient of (0,2) along the upper surface of a 2D domain, use

>>> var.faceGrad.constrain(((0,), (2,)), where=mesh.facesTop)

If the gradient normal to the boundary (e.g., 1 - V@) is to be set to a scalar value of 2, use

>>> var.faceGrad.constrain (2 » mesh.faceNormals, where=mesh.exteriorFaces)

5.6.3 Applying fixed flux boundary conditions
Generally these can be implemented with a judicious use of faceGrad.constrain (). Failing that, an exterior
flux term can be added to the equation. Firstly, set the terms’ coefficients to be zero on the exterior faces,

>>> diffCoeff.constrain(0., mesh.exteriorFaces)
>>> convCoeff.constrain(0., mesh.exteriorFaces)

then create an equation with an extra term to account for the exterior flux,

>>> eqn = (TransientTerm() + ConvectionTerm (convCoeff)
== DiffusionCoeff (diffCoeff)
+ (mesh.exteriorFaces * exteriorFlux) .divergence)

where exteriorFlux is arank 1 FaceVariable.

Note: The old equivalent F'i xedF 1ux boundary condition is now deprecated.

5.6.4 Applying outlet or inlet boundary conditions

Convection terms default to a no flux boundary condition unless the exterior faces are associated with a constraint, in
which case either an inlet or an outlet boundary condition is applied depending on the flow direction.
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5.6.5 Applying spatially varying boundary conditions

The use of spatial varying boundary conditions is best demonstrated with an example. Given a 2D equation in the
domain 0 < z < 1 and 0 < y < 1 with boundary conditions,

o=

—

xy onz>1/2andy > 1/2
fi-F =0 elsewhere

where F represents the flux. The boundary conditions in FiPy can be written with the following code,

>>> X, Y = mesh.faceCenters

>>> mask = ((X < 0.5 | (Y < 0.5))

>>> var.faceGrad.constrain (0, where=mesh.exteriorFaces & mask)
>>> var.constrain (X * Y, where=mesh.exteriorFaces & ~mask)

then

>>> eqgn.solve(...)

Further demonstrations of  spatially varying boundary condition can  be found in
examples.diffusion.mesh20x20 and examples.diffusion.circle

5.6.6 Applying internal boundary conditions
Applying internal boundary conditions can be achieved through the use of implicit and explicit sources. An equation
of the form

>>> eqn = TransientTerm() == DiffusionTerm()

can be constrained to have a fixed internal value at a position given by mask with the following alterations

>>> eqn = TransientTerm() == DiffusionTerm() - ImplicitSourceTerm(mask *» largeValue) + mask * largeV:

The parameter 1argeValue must be chosen to be large enough to completely dominate the matrix diagonal and the
RHS vector in cells that are masked. The mask variable would typically be a Cel1Variable boolean constructed
using the cell center values.

One must be careful to distinguish between constraining internal cell values during the solve step and simply applying
arbitrary constraints to a Cel1Variable. Applying a constraint,

>>> var.constrain (value, where=mask)

simply fixes the returned value of var at mask to be value. It does not have any effect on the implicit value of var
at the ma sk location during the linear solve so it is not a substitute for the source term machinations described above.
Future releases of FiPy may implicitly deal with this discrepancy, but the current release does not. A simple example
can be used to demonstrate this:

>>> m = GridlD (nx=2, dx=1.)
>>> var = CellVariable (mesh=m)

Apply a constraint to the faces for a right side boundary condition (which works).

>>> var.constrain(l., where=m.facesRight)

Create the equation with the source term constraint described above
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>>> mask = m.x < 1.

>>> largeValue = le+10

>>> value = 0.25

>>> eqn = DiffusionTerm() - ImplicitSourceTerm(largeValue » mask) + largeValue * mask x value

and the expected value is obtained.

>>> eqgn.solve (var)
>>> print var
[ 0.25 0.75]

However, if a constraint is used without the source term constraint an unexpected value is obtained

>>> var.constrain(0.25, where=mask)
>>> eqn = DiffusionTerm()

>>> eqgn.solve (var)

>>> print var

[ 0.25 1. ]

although the left cell has the expected value as it is constrained.

5.7 Running under Python 3

It is possible to run FiPy scripts under Python 3, but there is admittedly little advantage in doing so at this time. We
still develop and use FiPy under Python 2.x. To use, you must first convert FiPy‘s code to Python 3 syntax. From
within the main FiPy directory:

$ 2to3 —--write
$ 2to3 —--write --doctests_only

You can expect some harmless warnings from this conversion.
The minimal prerequisites are:

e NumPy version 1.5 or greater.

* SciPy version 0.9 or greater.

e Matplotlib version 1.2 or greater (this hasn’t been released yet, and we haven’t been able to successfully test the
matplotlibViewer classes with their development code).

5.8 Manual

You can view the manual online at <http://www.ctcms.nist.gov/fipy> or you can download the latest manual from
<http://matforge.org/fipy/wiki/FiPyManual>. Alternatively, it may be possible to build a fresh copy by issuing the
following command in the base directory:

$ python setup.py build_docs --pdf —--html

Note: This mechanism is intended primarily for the developers. At a minimum, you will need at least version 1.1.2
of Sphinx, plus all of its prerequisites, although we build the documentation witih the latest development code (you

will need hg installed):

$ pip install --upgrade -e hg+https://bitbucket.org/birkenfeld/sphinxfegg=sphinx

We use several contributed Sphinx plugins:
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$ hg clone https://bitbucket.org/birkenfeld/sphinx-contrib/

$ cd sphinx-contrib/traclinks $ python setup.py install

Bibliographic citations require the sphinxcontrib-bibtex package. For the moment, the development versions of several
packages are required to properly render our bibliography (you will need both bzr and git installed):

$ pip install -e bzr+lp:~pybtex-devs/pybtex/trunk
$ pip install -e git+git@github.com:mcmtroffaes/pybtex—docutils.git#egg=pybtex-docutils
$ pip install -e git+git@github.com:mcmtroffaes/sphinxcontrib-bibtex.git#egg=sphinxcontrib-bibtex
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Chapter

Theoretical and Numerical Background

This chapter describes the numerical methods used to solve equations in the FiPy programming environment. FiPy
uses the finite volume method (FVM) to solve coupled sets of partial differential equations (PDEs). For a good
introduction to the FVM see Nick Croft’s PhD thesis [13], Patankar [18] or Versteeg and Malalasekera [19].

Essentially, the FVM consists of dividing the solution domain into discrete finite volumes over which the state variables
are approximated with linear or higher order interpolations. The derivatives in each term of the equation are satisfied
with simple approximate interpolations in a process known as discretization. The (FVM) is a popular discretization
technique employed to solve coupled PDEs used in many application areas (e.g., Fluid Dynamics).

The FVM can be thought of as a subset of the Finite Element Method (FEM), just as the Finite Difference Method
(FDM) is a subset of the FVM. A system of equations fully equivalent to the FVM can be obtained with the FEM
using as weighting functions the characteristic functions of FV cells, i.e., functions equal to unity [20]. Analogously,
the discretization of equations with the FVM reduces to the FDM on Cartesian grids.

6.1 General Conservation Equation

The equations that model the evolution of physical, chemical and biological systems often have a remarkably universal
form. Indeed, PDEs have proven necessary to model complex physical systems and processes that involve variations
in both space and time. In general, given a variable of interest ¢ such as species concentration, pH, or temperature,
there exists an evolution equation of the form

o¢

— = H(¢, \i 6.1

5 = H(O.0)
where H is a function of ¢, other state variables \;, and higher order derivatives of all of these variables. Examples of
such systems are wide ranging, but include problems that exhibit a combination of diffusing and reacting species, as
well as such diverse problems as determination of the electric potential in heart tissue, of fluid flow, stress evolution,
and even the Schroedinger equation.

A general conservation equation, solved using FiPy, can include any combination of the following terms,

0 . n
Ao9) g (o) = (V- 0N o+ S
ot (6.2)
—— —— ———
transient convection diffusion source

where p, @ and T'; represent coefficients in the transient, convection and diffusion terms, respectively. These coeffi-
cients can be arbitrary functions of any parameters or variables in the system. The variable ¢ represents the unknown
quantity in the equation. The diffusion term can represent any higher order diffusion-like term, where the order is given
by the exponent n. For example, the diffusion term can represent conventional Fickean diffusion [i.e., V- (I'V¢)]
when the exponent n = 1 or a Cahn-Hilliard term [i.e., V - (I'1 V[V -T2V ¢)]) [14] [15] [16]] when n = 2, or a phase
field crystal term [i.e., V - (I1 V[V - Iy V{V -T'sV¢)})]) [17]1] when n = 3, although spectral methods are probably a
better approach. Higher order terms (n > 3) are also possible, but the matrix condition number becomes quite poor.
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6.2 Finite Volume Method

To use the FVM, the solution domain must first be divided into non-overlapping polyhedral elements or cells. A
solution domain divided in such a way is generally known as a mesh (as we will see, a Mesh is also a FiPy object).
A mesh consists of vertices, faces and cells (see Figure Mesh). In the FVM the variables of interest are averaged over
control volumes (CVs). The CVs are either defined by the cells or are centered on the vertices.

<>
e

Figure 6.1: Mesh

A mesh consists of cells, faces and vertices. For the purposes of FiPy, the divider between two cells is known as a face for all

vertex

dimensions.

6.2.1 Cell Centered FVM (CC-FVM)

In the CC-FVM the CVs are formed by the mesh cells with the cell center “storing” the average variable value in the
CV, (see Figure CV structure for an unstructured mesh). The face fluxes are approximated using the variable values
in the two adjacent cells surrounding the face. This low order approximation has the advantage of being efficient and
requiring matrices of low band width (the band width is equal to the number of cell neighbors plus one) and thus low
storage requirement. However, the mesh topology is restricted due to orthogonality and conjunctionality requirements.
The value at a face is assumed to be the average value over the face. On an unstructured mesh the face center may not
lie on the line joining the CV centers, which will lead to an error in the face interpolation. FiPy currently only uses the
CC-FVM.

6.2.2 Vertex Centered FVM (VC-FVM)

In the VC-FVM, the CV is centered around the vertices and the cells are divided into sub-control volumes that make
up the main CVs (see Figure CV structure for an unstructured mesh). The vertices “store” the average variable values
over the CVs. The CV faces are constructed within the cells rather than using the cell faces as in the CC-FVM. The
face fluxes use all the vertex values from the cell where the face is located to calculate interpolations. For this reason,
the VC-FVM is less efficient and requires more storage (a larger matrix band width) than the CC-FVM. However, the
mesh topology does not have the same restrictions as the CC-FVM. FiPy does not have a VC-FVM capability.

6.3 Discretization

The first step in the discretization of Equation (??) using the CC-FVM is to integrate over a CV and then make
appropriate approximations for fluxes across the boundary of each CV. In this section, each term in Equation (??) will
be examined separately.
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Figure 6.2: CV structure for an unstructured mesh
(a) Q24 represents a vertex-based CV and (b) 21, 22, Q23 and €24 represent cell centered CVs.
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6.3.1 Transient Term 0(p¢)/0t

For the transient term, the discretization of the integral fv over the volume of a CV is given by

p9) 11/ o (PP — PROP)VP
/V ot At 63)

where ¢p represents the average value of ¢ in a CV centered on a point P and the superscript “old” represents the
previous time-step value. The value Vp is the volume of the CV and At is the time step size.

This term is represented in FiPy as

>>> TransientTerm (coeff=rho)

6.3.2 Convection Term V - (ui¢)

The discretization for the convection term is given by

/v (ig)d :/ﬁﬁ¢ds

(6.4)

where we have used the divergence theorem to transform the integral over the CV volume |, v into an integral over the
CV surface [. The summation over the faces of a CV is denoted by 7 and Ay is the area of each face. The vector
71 is the normal to the face pointing out of the CV into an adjacent CV centered on point A. When using a first order
approximation, the value of ¢ must depend on the average value in adjacent cell ¢ 4 and the average value in the cell
of interest ¢ p, such that

¢y =ardp+ (1 —af)da.
The weighting factor oy is determined by the convection scheme, described in Numerical Schemes.
This term is represented in FiPy as

>>> <SpecificConvectionTerm> (coeff=u)

where <SpecificConvectionTerm> can be any of CentralDifferenceConvectionTerm,
ExponentialConvectionTerm, HybridConvectionTerm, PowerLawConvectionTerm,
UpwindConvectionTerm, ExplicitUpwindConvectionTerm, or VanLeerConvectionTermn.
The differences between these convection schemes are described in Section Numerical Schemes. The velocity
coefficient u must be a rank-1 FaceVariable, or a constant vector in the form of a Python list or tuple, e.g.
((1,), (2,)) foravectorin2D.

6.3.3 Diffusion Term V. (I';V¢)

The discretization for the diffusion term is given by

/V~(FV{...})dV:/F(ﬁ~V{...})dS
14 S
(6.5)
~ > Ty(ii-V{.. .} Ay
f
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{...} indicates recursive application of the specified operation on ¢, depending on the order of the diffusion term. The
estimation for the flux, (7i- V{...}), is obtained via

(. da—{.)r

(7@ V{.. )~ o

where the value of d 4 p is the distance between neighboring cell centers. This estimate relies on the orthogonality of
the mesh, and becomes increasingly inaccurate as the non-orthogonality increases. Correction terms have been derived
to improve this error but are not currently included in FiPy [13].

This term is represented in FiPy as

>>> DiffusionTerm(coeff=Gammal)

or

>>> ExplicitDiffusionTerm (coeff=Gammal)

ExplicitDiffusionTerm is provided primarily for illustrative purposes, although
examples.diffusion.meshlD  demonstrates its use in  Crank-Nicolson time  stepping.
ImplicitDiffusionTerm is almost always preferred (DiffusionTerm 1is a synonym for
ImplicitDiffusionTerm to reinforce this preference). One can also create an explicit diffusion term
with

>>> (Gammal * phi.faceGrad) .divergence

Higher order diffusion
Higher order diffusion expressions, such as V4¢ or V- (I'1 V (V- (I';V¢))) for Cahn-Hilliard are represented as
>>> DiffusionTerm(coeff=(Gammal, GammaZ2))

The number of elements supplied for coe f £ determines the order of the term.

6.3.4 Source Term

Any term that cannot be written in one of the previous forms is considered a source Sy. The discretization for the
source term is given by,

/ S¢ dV ~ S¢Vp. (66)
%

Including any negative dependence of Sy on ¢ increases solution stability. The dependence can only be included in a
linear manner so Equation (6.6) becomes

Vp(So + Si¢p),

where S is the source which is independent of ¢ and .S; is the coeficient of the source which is linearly dependent on
0.
A source term is represented in FiPy essentially as it appears in mathematical form, e.g., 3x2 4+ bsin § would be written

>>> 3 % kappax*2 + b * numrix.sin(theta)

Note: Functions like sin () can be obtained from the fipy.tools.numerix module.

Warning: Generally, things will not work as expected if the equivalent function is used from the NumPy or SciPy
library.
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If, however, the source depends on the variable that is being solved for, it can be advantageous to linearize the source
and cast part of it as an implicit source term, e.g., 3k + ¢ sin 6 might be written as

>>> 3 % kappa*x2 + ImplicitSourceTerm(coeff=sin(theta))

6.4 Linear Equations

The aim of the discretization is to reduce the continuous general equation to a set of discrete linear equations that can
then be solved to obtain the value of the dependent variable at each CV center. This results in a sparse linear system
that requires an efficient iterative scheme to solve. The iterative schemes available to FiPy are currently encapsulated
in the PySparse and PyTrilinos suites of solvers and include most common solvers such as the conjugate gradient
method and LU decomposition.

Combining Equations (6.3), (6.4), (6.5) and (6.6), the complete discretization for equation (??) can now be written for
each CV as

pp(dp — %)
At

VP+Z(ﬁ‘.ﬁ)fAf laydp + (1 — ay) da]

!
=y FfAfi((bAd;fP) + Vp(So + Siép).
!

Equation (6.4) is now in the form of a set of linear combinations between each CV value and its neighboring values
and can be written in the form

apdp =Y aspa+bp, 6.7)
!

where

_ pPVp
“P= A

JrZ(aA +Ff) — VpSi,
f

ap = Df — (1 — Olf)Ff,
pprVpodP!
At

The face coefficients, Iy and Dy, represent the convective strength and diffusive conductance respectively, and are
given by

bp = VpSp +

6.5 Numerical Schemes

The coefficients of equation (??) must remain positive, since an increase in a neighboring value must result in an
increase in ¢p to obtain physically realistic solutions. Thus, the inequalities a4 > 0 and a4 + Fy > 0 must be
satisfied. The Peclet number Py = Fy/Dy is the ratio between convective strength and diffusive conductance. To
achieve physically realistic solutions, the inequality

1
> P> —— .
o T P> 6.8)
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must be satisfied. The parameter oy is defined by the chosen scheme, depending on Equation (6.8). The various
differencing schemes are:

the central differencing scheme, where

1
o= 69)

so that | Py| < 2 satisfies Equation (6.8). Thus, the central differencing scheme is only numerically stable for a
low values of Py.

the upwind scheme, where

1 if Py >0,
g = = (6.10)
0 lfPf < 0.

Equation (6.10) satisfies the inequality in Equation (6.8) for all values of P;. However the solution over predicts
the diffusive term leading to excessive numerical smearing (“false diffusion”).
the exponential scheme, where
(Pp—1)exp(Pr) +1
Py(exp (Py) — 1)

This formulation can be derived from the exact solution, and thus, guarantees positive coefficients while not
over-predicting the diffusive terms. However, the computation of exponentials is slow and therefore a faster
scheme is generally used, especially in higher dimensions.

ay = (6.11)

the hybrid scheme, where

T it P> 2,
if | Py| < 2, (6.12)
Py i Pp< -2

— 1

The hybrid scheme is formulated by allowing Py — oo, Py — 0 and Py — —oo in the exponential scheme.
The hybrid scheme is an improvement on the upwind scheme, however, it deviates from the exponential scheme
at |P f‘ =2.

the power law scheme, where

o if Py > 10,
f
(P;—1)4+(1—P;/10)% .
B z P b2 if 0 < Py < 10, 6.13)
A=\ a-pr/10°1 :

if =10 < Py <0,
if Pr < —10.

Py

_P7f

The power law scheme overcomes the inaccuracies of the hybrid scheme, while improving on the computational
time for the exponential scheme.

Warning: VanlLeerConvectionTerm not mentioned and no discussion of explicit forms.

All of the numerical schemes presented here are available in FiPy and can be selected by the user.
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Chapter

Design and Implementation

The goal of FiPy is to provide a highly customizable, open source code for modeling problems involving coupled sets
of PDEs. FiPy allows users to select and customize modules from within the framework. FiPy has been developed to
address model problems in materials science such as poly-crystals, dendritic growth and electrochemical deposition.
These applications all contain various combinations of PDEs with differing forms in conjunction with other unusual
physics (over varying length scales) and unique solution procedures. The philosophy of FiPy is to enable customization
while providing a library of efficient modules for common objects and data types.

7.1 Design

7.1.1 Numerical Approach

The solution algorithms given in the FiPy examples involve combining sets of PDEs while tracking an interface
where the parameters of the problem change rapidly. The phase field method and the level set method are specialized
techniques to handle the solution of PDEs in conjunction with a deforming interface. FiPy contains several examples
of both methods.

FiPy uses the well-known Finite Volume Method (FVM) to reduce the model equations to a form tractable to linear
solvers.

7.1.2 Object Oriented Structure

FiPy is programmed in an object-oriented manner. The benefit of object oriented programming mainly lies in encap-
sulation and inheritance. Encapsulation refers to the tight integration between certain pieces of data and methods that
act on that data. Encapsulation allows parts of the code to be separated into clearly defined independent modules that
can be re-applied or extended in new ways. Inheritance allows code to be reused, overridden, and new capabilities
to be added without altering the original code. An object is treated by its users as an abstraction; the details of its
implementation and behavior are internal.

7.1.3 Test Based Development

FiPy has been developed with a large number of test cases. These test cases are in two categories. The lower level tests
operate on the core modules at the individual method level. The aim is that every method within the core installation
has a test case. The high level test cases operate in conjunction with example solutions and serve to test global solution
algorithms and the interaction of various modules.

With this two-tiered battery of tests, at any stage in code development, the test cases can be executed and errors can
be identified. A comprehensive test base provides reassurance that any code breakages will be clearly demonstrated
with a broken test case. A test base also aids dissemination of the code by providing simple examples and knowledge
of whether the code is working on a particular computer environment.
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7.1.4 Open Source

In recent years, there has been a movement to release software under open source and associated unrestrictied licenses,
especially within the scientific community. These licensing terms allow users to develop their own applications with
complete access to the source code and then either contribute back to the main source repository or freely distribute
their new adapted version.

As a product of the National Institute of Standards and Technology, the FiPy framework is placed in the public domain
as a matter of U. S. Federal law. Furthermore, FiPy is built upon existing open source tools. Others are free to use
FiPy as they see fit and we welcome contributions to make FiPy better.

7.1.5 High-Level Scripting Language

Programming languages can be broadly lumped into two categories: compiled languages and interpreted (or scripting)
languages. Compiled languages are converted from a human-readable text source file to a machine-readable binary
application file by a sequence of operations generally referred to as “compiling” and “linking.” The binary application
can then be run as many times as desired, but changes will provoke a new cycle of compiling and linking. Interpreted
languages are converted from human-readable to machine-readable on the fly, each time the script is executed. Because
the conversion happens every time ', interpreted code is usually slower when running than compiled code. On the other
hand, code development and debugging tends to be much easier and fluid when it’s not necessary to wait for compile
and link cycles after every change. Furthermore, because the conversion happens in real time, it is possible to have
interactive sessions in a scripting language that are not generally possible in compiled languages.

Another distinction, somewhat orthogonal, but closely related, to that between compiled and interpreted languages,
is between low-level languages and high-level languages. Low-level languages describe actions in simple terms that
are closer to the way the computer actually functions. High-level languages describe actions in more complex and
abstract terms that are closer to the way the programmer thinks about the problem at hand. This increased complexity
in the meaning of an expression renders simpler code, because the details of the implementation are hidden away in
the language internals or in an external library. For example, a low-level matrix multiplication written in C might be
rendered as

if (Acols != Brows)
error "these matrix shapes cannot be multiplied";

C = (float *) malloc(sizeof (float) *» Bcols * Arows);
for (i = 0; i < Bcols; i++) {
for (j = 0; j < Arows; J++) {
Cril il = 0;

for (k = 0; k < Acols; k++) {
C[i1[3] += A[il([k] » B[k1[3JI;

}

Note that the dimensions of the arrays must be supplied externally, as C provides no intrinsic mechanism for deter-
mining the shape of an array. An equivalent high-level construction might be as simple as

C=A B

All of the error checking, dimension measuring, and space allocation is handled automatically by low-level code that
is intrinsic to the high-level matrix multiplication operator. The high-level code “knows” that matrices are involved,
how to get their shapes, and to interpret ‘* as a matrix multiplier instead of an arithmetic one. All of this allows the
programmer to think about the operation of interest and not worry about introducing bugs in low-level code that is not
unique to their application.

! .. neglecting such common optimizations as byte-code interpreters.
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Although it needn’t be true, for a variety of reasons, compiled languages tend to be low-level and interpreted languages
tend to be high-level. Because low-level languages operate closer to the intrinsic “machine language” of the computer,
they tend to be faster at running a given task than high-level languages, but programs written in them take longer to
write and debug. Because running performance is a paramount concern, most scientific codes are written in low-level
compiled languages like FORTRAN or C.

A rather common scenario in the development of scientific codes is that the first draft hard-codes all of the problem
parameters. After a few (hundred) iterations of recompiling and relinking the application to explore changes to the
parameters, code is added to read an input file containing a list of numbers. Eventually, the point is reached where it is
impossible to remember which parameter comes in which order or what physical units are required, so code is added
to, for example, interpret a line beginning with ‘#° as a comment. At this point, the scientist has begun developing a
scripting language without even knowing it. Unfortunately for them, very few scientists have actually studied computer
science or actually know anything about the design and implementation of script interpreters. Even if they have the
expertise, the time spent developing such a language interpreter is time not spent actually doing research.

In contrast, a number of very powerful scripting languages, such as Tcl, Java, Python, Ruby, and even the vener-
able BASIC, have open source interpreters that can be embedded directly in an application, giving scientific codes
immediate access to a high-level scripting language designed by someone who actually knew what they were doing.

We have chosen to go a step further and not just embed a full-fledged scripting language in the FiPy framework,
but instead to design the framework from the ground up in a scripting language. While runtime performance is
unquestionably important, many scientific codes are run relatively little, in proportion to the time spent developing
them. If a code can be developed in a day instead of a month, it may not matter if it takes another day to run instead of
an hour. Furthermore, there are a variety of mechanisms for diagnosing and optimizing those portions of a code that
are actually time-critical, rather than attempting to optimize all of it by using a language that is more palatable to the
computer than to the programmer. Thus FiPy, rather than taking the approach of writing the fast numerical code first
and then dealing with the issue of user interaction, initially implements most modules in high-level scripting language
and only translates to low-level compiled code those portions that prove inefficient.

7.1.6 Python Programming Language
Acknowledging that several scripting languages offer a number, if not all, of the features described above, we have
selected Python for the implementation of FiPy. Python is

* an interpreted language that combines remarkable power with very clear syntax,

* freely usable and distributable, even for commercial use,

* fully object oriented,

* distributed with powerful automated testing tools (doctest, unittest),

* actively used and extended by other scientists and mathemeticians (SciPy, NumPy, ScientificPython, PySparse).

* easily integrated with low-level languages such as C (weave, blitz, PyRex).

7.2 Implementation

The Python classes that make up FiPy are described in detail in fipy Package Documentation, but we give a brief
overview here. FiPy is based around three fundamental Python classes: Mesh, Variable, and Term. Using the
terminology of Theoretical and Numerical Background:

A Mesh object represents the domain of interest. FiPy contains many different specific mesh classes to describe
different geometries.
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A Variable object represents a quantity or field that can change during the problem evolution. A particular type of
Variable,calledaCellVariable, represents ¢ atthe centers of the cells of the Mesh. ACellVariable
describes the values of the field ¢, but it is not concerned with their geometry; that role is taken by the Mesh.

An important property of Variable objects is that they can describe dependency relationships, such that:

>>> a = Variable (value = 3)
>>> b = a « 4

does not assign the value 12 to b, but rather it assigns a multiplication operator object to b, which depends on
the Variable object a:

>>> Db

(Variable (value = 3) *x 4)
>>> a.setValue (5)

>>> Db

(Variable (value = 5) x 4)

The numerical value of the Variable is not calculated until it is needed (a process known as “lazy evaluation”):

>>> print b
20

A Term object represents any of the terms in Equation (??) or any linear combination of such terms. Early in the
development of FiPy, a distinction was made between Equat ion objects, which represented all of Equation
(??), and Term objects, which represented the individual terms in that equation. The Equat ion object has
since been eliminated as redundant. Term objects can be single entities such asa DiffusionTermor a linear
combination of other Te rm objects that build up to form an expression such as Equation (2?).

Beyond these three fundamental classes of Mesh, Variable, and Term, FiPy is composed of a number of related
classes.

BoundaryCondition

SparseMatrix

Figure 7.1: Primary object relationships in FiPy.

A Mesh object is composed of cells. Each cell is defined by its bounding faces and each face is defined by its
bounding vertices. A Term object encapsulates the contributions to the _SparseMatrix that defines the solution
of an equation. BoundaryCondition objects are used to describe the conditions on the boundaries of the Mesh,
and each Term interprets the BoundaryCondition objects as necessary to modify the _SparseMatrix. An
equation constructed from Term objects can apply a unique Solver to invert its _SparseMatrix in the most
expedient and stable fashion. At any point during the solution, a Viewer can be invoked to display the values of the
solved Variable objects.

At this point, it will be useful to examine some of the example problems in Examples. More classes are introduced in
the examples, along with illustrations of their instantiation and use.

42 Chapter 7. Design and Implementation



Chapter

Frequently Asked Questions

8.1 How do | represent an equation in FiPy?

As explained in Theoretical and Numerical Background, the canonical governing equation that can be solved by FiPy
for the dependent Ce11Variable ¢ is

269) v () = (v V)" 6+ 5,
N~ = Y =

transient convection diffusion source
and the individual terms are discussed in Discretization.

A physical problem can involve many different coupled governing equations, one for each variable. Numerous specific
examples are presented in Part Examples.

8.1.1 Is there a way to model an anisotropic diffusion process or more generally to
represent the diffusion coefficient as a tensor so that the diffusion term takes
the form 0,I';;0;0?

Terms of the form 9;I";;0;¢ can be posed in FiPy by using a list, tuple rank 1 or rank 2 FaceVariable to represent
a vector or tensor diffusion coefficient. For example, if we wished to represent a diffusion term with an anisotropy
ratio of 5 aligned along the x-coordinate axis, we could write the term as,

>>> DiffusionTerm([[[5, 01, [0, 1111)

which represents 58% + 85 . Notice that the tensor, written in the form of a list, is contained within a list. This is
because the first index of the list refers to the order of the term not the first index of the tensor (see Higher order
diffusion). This notation, although succinct can sometimes be confusing so a number of cases are interpreted below.

>>> DiffusionTerm([[5, 111)

This represents the same term as the case examined above. The vector notation is just a short-hand representation for
the diagonal of the tensor. Off-diagonals are assumed to be zero.
>>> DiffusionTerm([5, 1])

.. . . . 2
This simply represents a fourth order isotropic diffusion term of the form 5 (85 + 85) .
>>> DiffusionTerm([[1, 0], [0, 111)

Nominally, this should represent a fourth order diffusion term of the form 9?2 85, but FiPy does not currently support
anisotropy for higher order diffusion terms so this may well throw an error or give anomalous results.
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>>> x, y = mesh.cellCenters
>>> DiffusionTerm(CellVariable (mesh=mesh,
value=[[x*+2, x » yl, [-x » y, —y**2]])

This represents an anisotropic diffusion coefficient that varies spatially so that the term has the form 9, (229, +zyd, )+
Oy (—zydy — y?0,) = 20, — y0, + x20% — y28§.

Generally, anisotropy is not conveniently aligned along the coordinate axes; in these cases, it is necessary to apply
a rotation matrix in order to calculate the correct tensor values, see examples.diffusion.anisotropy for
details.

8.1.2 How do | represent a ... term that doesn’t involve the dependent variable?

It is important to realize that, even though an expression may superficially resemble one of those shown in Discretiza-
tion, if the dependent variable for that PDE does not appear in the appropriate place, then that term should be treated
as a source.

How do | represent a diffusive source?

If the governing equation for ¢ is

o _

ot V- (D1V¢) + V- (D2VE)

then the first term is a Transient Term and the second term is a Di ffusionTerm, but the third term is simply an
explicit source, which is written in Python as

>>> (D2 * xi.faceGrad) .divergence

Higher order diffusive sources can be obtained by simply nesting the references to faceGrad and divergence.

Note: We use faceGrad, rather than grad, in order to obtain a second-order spatial discretization of the diffusion
term in &, consistent with the matrix that is formed by DiffusionTerm for ¢.

How do I represent a convective source?

The convection of an independent field £ as in

0 .
E—V'(Uﬁ)

can be rendered as

>>> (u * xi.arithmeticFaceValue) .divergence

when # is arank-1 FaceVariable (preferred) or as

>>> (u * xi).divergence

ifiisarank-1 CellVariable.
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How do | represent a transient source?

The time-rate-of change of an independent variable £, such as in

d(p19) d(p2£)

ot ot
does not have an abstract form in /7Py and should be discretized directly, in the manner of Equation (2?), as

>>> TransientTerm(coeff=rhol) == rho2 * (xi - xi.old) / timeStep

This technique is used in examples.phase.anisotropy.

8.1.3 What if my term involves the dependent variable, but not where FiPy puts it?

Frequently, viewing the term from a different perspective will allow it to be cast in one of the canonical forms. For
example, the third term in

99
ot

might be considered as the diffusion of the independent variable ¢ with a mobility D2¢ that is a function of the
dependent variable ¢. For FiPy‘s purposes, however, this term represents the convection of ¢, with a velocity Do VE,
due to the counter-diffusion of &, so

=V (D1V¢) + V- (D20VE)

>>> eq = TransientTerm() == (DiffusionTerm(coeff=D1)
+ <Specific>ConvectionTerm(coeff=D2 * xi.faceGrad))

Note: With the advent of Coupled and Vector Equations in FiPy 3.x, it is now possible to represent both terms with
DiffusionTerm.

8.1.4 What if the coefficient of a term depends on the variable that I’'m solving for?

A non-linear coefficient, such as the diffusion coefficient in V- [I'1 (¢)V¢] = V- [['od(1 — ¢)V | is not a problem
for FiPy. Simply write it as it appears:

>>> diffTerm = DiffusionTerm(coeff=GammaO % phi = (1 - phi))

Note: Due to the nonlinearity of the coefficient, it will probably be necessary to “sweep” the solution to convergence
as discussed in [terations, timesteps, and sweeps? Oh, my!.

8.2 How can | see what I’'m doing?

8.2.1 How do | export data?

The way to save your calculations depends on how you plan to make use of the data. If you want to save it
for “restart” (so that you can continue or redirect a calculation from some intermediate stage), then you’ll want
to “pickle” the Python data with the dump module. This is illustrated in examples.phase.anisotropy,
examples.phase.impingement .mesh40x1l, examples.phase.impingement.mesh20x20, and
examples.levelSet.electroChem.howToWriteAScript.
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On the other hand, pickled FiPy data is of little use to anything besides Python and FiPy. If you want to import your
calculations into another piece of software, whether to make publication-quality graphs or movies, or to perform some
analysis, or as input to another stage of a multiscale model, then you can save your data as an ASCII text file of
tab-separated-values with a TSVViewer. This is illustrated in examples.diffusion.circle.

8.2.2 How do | save a plot image?

Some of the viewers have a button or other mechanism in the user interface for saving an image file. Also, you can
supply an optional keyword filename when you tell the viewer toplot (), e.g.

>>> viewer.plot (filename="myimage.ext")

which will save a file named myimage .ext in your current working directory. The type of image is determined by
the file extension “. ext”. Different viewers have different capabilities:

9 <

Matplotlib accepts “.eps,” “. jpg” (Joint Photographic Experts Group), and “. png” (Portable Network Graphics).

Attention: Actually, Matplotlib supports different extensions, depending on the chosen backend, but our
MatplotlibViewer classes don’t properly support this yet.

What if | only want the saved file, with no display on screen?

To our knowledge, this is only supported by Matplotlib, as is explained in the Matplotlib FAQ on image backends.
Basically, you need to tell Matplotlib to use an “image backend,” such as “Agg” or “Cairo.” Backends are discussed
at http://matplotlib.sourceforge.net/backends.html.

8.2.3 How do | make a movie?

FiPy has no facilities for making movies. You will need to save individual frames (see the previous question) and then
stitch them together into a movie, using one of a variety of different free, shareware, or commercial software packages.
The guidance in the Matplotlib FAQ on movies should be adaptable to other Viewers.

8.2.4 Why doesn’t the Viewer look the way | want?

FiPy‘s viewers are utilitarian. They’re designed to let you see something with a minimum of effort. Because different
plotting packages have different capabilities and some are easier to install on some platforms than on others, we have
tried to support a range of Python plotters with a minimal common set of features. Many of these packages are capable
of much more, however. Often, you can invoke the Viewer you want, and then issue supplemental commands for
the underlying plotting package. The better option is to make a “subclass” of the FiPy Viewer that comes closest to
producing the image you want. You can then override just the behavior you wan to change, while letting FiPy do most
of the heavy lifting. See examples.phase.anisotropy and examples.phase.polyxtal for examples of
creating a custom Matplotlib Viewer class; see examples.cahnHilliard. sphere for an example of creating
a custom Mayavi Viewer class.

8.3 lterations, timesteps, and sweeps? Oh, my!

Any non-linear solution of partial differential equations is an approximation. These approximations benefit from
repetetive solution to achieve the best possible answer. In FiPy (and in many similar PDE solvers), there are three
layers of repetition.
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iterations This is the lowest layer of repetition, which you’ll generally need to spend the least time thinking about.
FiPy solves PDEs by discretizing them into a set of linear equations in matrix form, as explained in Discretiza-
tion and Linear Equations. It is not always practical, or even possible, to exactly solve these matrix equations
on a computer. FiPy thus employs “iterative solvers”, which make successive approximations until the linear
equations have been satisfactorily solved. FiPy chooses a default number of iterations and solution tolerance,
which you will not generally need to change. If you do wish to change these defaults, you’ll need to create a
new Solver object with the desired number of iterations and solution tolerance, e.g.

>>> mySolver = LinearPCGSolver (iterations=1234, tolerance=5e-6)

>>> eqg.solve(..., solver=mySolver, ...)

Note: The older Solver steps= keyword is now deprecated in favor of iterations= to make the role
clearer.

Solver iterations are changed from their defaults in examples.flow.stokesCavity and
examples.updating.update0_1tol_0.

sweeps This middle layer of repetition is important when a PDE is non-linear (e.g., a diffusivity that depends on
concentration) or when multiple PDEs are coupled (e.g., if solute diffusivity depends on temperature and thermal
conductivity depends on concentration). Even if the Solver solves the linear approximation of the PDE to
absolute perfection by performing an infinite number of iterations, the solution may still not be a very good
representation of the actual non-linear PDE. If we resolve the same equation at the same point in elapsed time,
but use the result of the previous solution instead of the previous timestep, then we can get a refined solution to
the non-linear PDE in a process known as “sweeping.”

Note: Despite references to the “previous timestep,” sweeping is not limited to time-evolving problems. Non-
linear sets of quasi-static or steady-state PDEs can require sweeping, too.

We need to distinguish between the value of the variable at the last timestep and the value of the variable at the
last sweep (the last cycle where we tried to solve the current timestep). This is done by first modifying the way
the variable is created:

>>> myVar = CellVariable(..., hasOld=True)

and then by explicitly moving the current value of the variable into the “old” value only when we want to:
>>> myVar.updateOld ()
Finally, we will need to repeatedly solve the equation until it gives a stable result. To clearly distinguish that a
single cycle will not truly “solve” the equation, we invoke a different method “sweep () :
>>> for sweep in range (sweeps) :
eq.sweep (var=myVar, ...)
Even better than sweeping a fixed number of cycles is to do it until the non-linear PDE has been solved satisfac-
torily:
>>> while residual > desiredResidual:

residual = eq.sweep (var=myVar, ...)

Sweeps are used to achieve better solutions in examples.diffusion.meshlD,
examples.phase.simple, examples.phase.binaryCoupled, and
examples.flow.stokesCavity.

timesteps This outermost layer of repetition is of most practical interest to the user. Understanding the time evolu-
tion of a problem is frequently the goal of studying a particular set of PDEs. Moreover, even when only an
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equilibrium or steady-state solution is desired, it may not be possible to simply solve that directly, due to non-
linear coupling between equations or to boundary conditions or initial conditions. Some types of PDEs have
fundamental limits to how large a timestep they can take before they become either unstable or inaccurate.

Note: Stability and accuracy are distinctly different. An unstable solution is often said to “blow up”, with
radically different values from point to point, often diverging to infinity. An inaccurate solution may look

perfectly reasonable, but will disagree significantly from an analytical solution or from a numerical solution
obtained by taking either smaller or larger timesteps.

For all of these reasons, you will frequently need to advance a problem in time and to choose an appropriate
interval between solutions. This can be simple:

>>> timeStep = 1.234e-5
>>> for step in range (steps):
eg.solve (var=myVar, dt=timeStep, ...)

or more elaborate:

>>> timeStep = 1.234e-5
>>> elapsedTime = 0
>>> while elapsedTime < totalElapsedTime:
eg.solve (var=myVar, dt=timeStep, ...)
elapsedTime += timeStep
timeStep = SomeFunctionOfVariablesAndTime (myVarl, myVar2, elapedTime)

A majority of the examples in this manual illustrate time evolving behavior. Notably, boundary conditions
are made a function of elapsed time in examples.diffusion.meshl1D. The timestep is chosen based on
the expected interfacial velocity in examples.phase.simple. The timestep is gradually increased as the
kinetics slow down in examples.cahnHilliard.mesh2DCoupled.

Finally, we can (and often do) combine all three layers of repetition:

>>> myVar = CellVariable(..., hasOld=1l)
>>> mySolver = LinearPCGSolver (iterations=1234, tolerance=5e-6)

>>> while elapsedTime < totalElapsedTime:
myVar .updateOld()
while residual > desiredResidual:
residual = eqg.sweep (var=myVar, dt=timeStep, ...)
elapsedTime += timeStep

8.4 Why the distinction between Cellvariable and FaceVariable
coefficients?

FiPy solves field variables on the cell centers. Transient and source terms describe the change in the value of a field at
the cell center, and so they take a Ce11Variable coefficient. Diffusion and convection terms involve fluxes between
cell centers, and are calculated on the face between two cells, and so they take a FaceVariable coefficient.

Note: IfyousupplyaCellvVariable var whenaFaceVariable isexpected, FiPy will automatically substitute
var.arithmeticFaceValue. This can have undesirable consequences, however. For one thing, the arithmetic

face average of a non-linear function is not the same as the same non-linear function of the average argument, e.g., for
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This distinction is not generally important for smoothly varying functions, but can dramatically affect the solution
when sharp changes are present. Also, for many problems, such as a conserved concentration field that cannot be
allowed to drop below zero, a harmonic average is more appropriate than an arithmetic average.

If you experience problems (unstable or wrong results, or excessively small timesteps), you may need to explicitly
supply the desired FaceVariable rather than letting FiPy assume one.

8.5 How do | represent boundary conditions?

See the Boundary Conditions section for more details.

8.6 What does this error message mean?

ValueError: frames are not aligned This error most likely means that you have provided a
CellvVariable when FiPy was expecting a FaceVariable (or vice versa).

MA.MA.MAError: Cannot automatically convert masked array to Numeric because data is maske
This not-so-helpful error message could mean a number of things, but the most likely explanation is that the
solution has become unstable and is diverging to =cc. This can be caused by taking too large a timestep or by
using explicit terms instead of implicit ones.

repairing catalog by removing key This message (not really an error, but may cause test failures) can
result when using the scipy.weave package via the ——inline flag. It is due to a bug in SciPy that
has been patched in their source repository: http://www.scipy.org/mailinglists/mailman?fn=scipy-dev/2005-
June/003010.html.

numerix Numeric 23.6 This is neither an error nor a warning. It’s just a sloppy message left in SciPy:
http://thread.gmane.org/gmane.comp.python.scientific.user/4349.

8.7 How do | change FiPy’s default behavior?

FiPy tries to make reasonable choices, based on what packages it finds installed, but there may be times that you wish
to override these behaviors. See the Command-line Flags and Environment Variables section for more details.

8.8 How can I tell if I'm running in parallel?

See Solving in Parallel.

8.9 Why don’t my scripts work anymore?

FiPy has experienced three major API changes. The steps necessary to upgrade older scripts are discussed in Updating
FiPy.
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8.10 What if my question isn’t answered here?

Please post your question to the mailing list <http://www.ctcms.nist.gov/fipy/mail.html> or file a Tracker request at
<http://matforge.org/fipy/report>.
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Chapter

Glossary

Buildbot The BuildBot is a system to automate the compile/test cycle required by most software projects to validate
code changes. See http://trac.buildbot.net/.

FiPy The eponymous software package. See http://www.ctcms.nist.gov/fipy.

Gmsh A free and Open Source 3D (and 2D!) finite element grid generator. It also has a CAD engine and post-
processor that FiPy does not make use of. See http://www.geuz.org/gmsh.

IPython An improved Python shell that integrates nicely with Matplotlib. See http://ipython.scipy.org/.

Matplotlib matplotlib Python package displays publication quality results. It displays both 1D X-Y type plots
and 2D contour plots for structured data. It does not display unstructured 2D data or 3D data. It works on
all common platforms and produces publication quality hard copies. See http://matplotlib.sourceforge.net and
Matplotlib.

Mayavi The mayavi Data Visualizer is a free, easy to use scientific data visualizer. It displays 1D, 2D and 3D data.
It is the only FiPy viewer available for 3D data. Other viewers are probably better for 1D or 2D viewing. See
http://code.enthought.com/projects/mayavi and Mayavi.

MayaVi The predecessor to Mayavi. Yes, it’s confusing.

numarray An archaic predecessor to NumPy.

Numeric An archaic predecessor to NumPy.

NumPy The numpy Python package provides array arithmetic facilities. See http://www.scipy.org/NumPy.

pip “pip installs python” is a tool for installing and managing Python packages, such as those found in PyPI. See
http://www.pip-installer.org.

PyAMG A suite of python-based preconditoners. See http://code.google.com/p/pyamg/ and PyAMG.

PyPI The Python Package Index is a repository of software for the Python programming language. See
http://pypi.python.org/pypi.
Pyrex A mechanism for mixing C and Python code. See http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/.

PySparse The pysparse Python package provides sparse matrix storage, solvers, and linear algebra routines. See
http://pysparse.sourceforge.net and PySparse.

Python The programming language that FiPy (and your scripts) are written in. See http://www.python.org/.

Python 3 The (likely) future of the Python programming language. Third-party packages are slowly being adapted,
but many that F7Py uses are not yet available. See http://docs.python.org/py3k/ and PEP 3000.

PyTrilinos Python wrapper for Trilinos. See http://trilinos.sandia.gov/packages/pytrilinos/.
PyxViewer A now defunct python viewer.

ScientificPython A collection of wuseful utilities for scientists. See  http://dirac.cnrs-
orleans.fr/plone/software/scientificpython.
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SciPy The scipy package provides a wide range of scientific and mathematical operations. FiPy can use
scipy.weave for enhanced performance with C language inlining and Scipy‘s solver suite for linear solu-
tions. See http://www.scipy.org/. and SciPy.

Sphinx The tools used to generate the /7Py documentation. See http://sphinx.pocoo.org/.

Trilinos This package provides sparse matrix storage, solvers, and preconditioners, and can be used instead of PyS-
parse. Trilinos preconditioning allows for iterative solutions to some difficult problems that PySparse cannot
solve. See http://trilinos.sandia.gov and Trilinos.
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Note: Any given module “example.something.input” can be found in the file
“examples/something/input.py”.

These examples can be used in at least four ways:
» Each example can be invoked individually to demonstrate an application of FiPy:

$ python examples/something/input.py

» Each example can be invoked such that when it has finished running, you will be left in an interactive Python
shell:

$ python -i examples/something/input.py

At this point, you can enter Python commands to manipulate the model or to make queries about the example’s
variable values. For instance, the interactive Python sessions in the example documentation can be typed in
directly to see that the expected results are obtained.

* Alternatively, these interactive Python sessions, known as doctest blocks, can be invoked as automatic tests:

$ python setup.py test —--examples

In this way, the documentation and the code are always certain to be consistent.

¢ Finally, and most importantly, the examples can be used as a templates to design your own problem scripts.

Note:  The examples shown in this manual have been written with particular emphasis on serving as
both documentation and as comprehensive tests of the FiPy framework. As explained at the end of

examples/diffusion/steadyState/meshlD.py, your own scripts can be much more succint, if you
wish, and include only the text that follows the “>>>"and ““. . .” prompts shown in these examples.

To obtain a copy of an example, containing just the script instructions, type:

$ python setup.py copy_script —-From x.py —--To y.py

In addition to those presented in this manual, there are dozens of other files in the examples/ directory, that demon-
strate other uses of FiPy. If these examples do not help you construct your own problem scripts, please contact us.
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o 1

Diffusion Examples

examples.diffusion.meshlD Solve a one-dimensional diffusion equation under different conditi
examples.diffusion.coupled Solve the biharmonic equation as a coupled pair of diffusion equat
examples.diffusion.mesh20x20 Solve a two-dimensional diffusion problem in a square domain.

examples.diffusion.circle Solve the diffusion equation in a circular domain meshed with tria

examples.diffusion.electrostatics Solve the Poisson equation in one dimension.

examples.diffusion.nthOrder.input4thOrderl1D Solve a fourth-order diffusion problem.

examples.diffusion.anisotropy Solve the diffusion equation with an anisotropic diffusion coefficie

10.1 examples.diffusion.mesh1D

Solve a one-dimensional diffusion equation under different conditions.

To run this example from the base FiPy directory, type:

$ python examples/diffusion/meshlD.py

at the command line. Different stages of the example should be displayed, along with prompting messages in the
terminal.

This example takes the user through assembling a simple problem with FiPy. It describes different approaches to a 1D
diffusion problem with constant diffusivity and fixed value boundary conditions such that,

9¢ 2

- = DV?¢. 10.1
5t ¢ (10.1)
The first step is to define a one dimensional domain with 50 solution points. The Grid1D object represents a linear
structured grid. The parameter dx refers to the grid spacing (set to unity here).

>>> from fipy import =«

>>> nx = 50
>>> dx = 1.
>>> mesh = GridlD (nx=nx, dx=dx)

FiPy solves all equations at the centers of the cells of the mesh. We thus need a Cel1variable object to hold the
values of the solution, with the initial condition ¢ = 0 at ¢t = 0,

>>> phi = CellVariable (name="solution variable",
mesh=mesh,
value=0.)

We’ll let
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>>> D = 1.

for now.

The set of boundary conditions are given to the equation as a Python tuple or list (the distinction is not generally
important to FiPy). The boundary conditions

0 atx =1,
1 atx=0.

are formed with a value

>>> valueleft = 1
>>> valueRight = 0

and a set of faces over which they apply.

Note: Only faces around the exterior of the mesh can be used for boundary conditions.

For example, here the exterior faces on the left of the domain are extracted by mesh.facesLeft. The boundary
conditions is applied using phi. constrain () with tthese faces and a value (valueLeft).

>>> phi.constrain(valueRight, mesh.facesRight)
>>> phi.constrain(valuelLeft, mesh.facesLeft)

Note: If no boundary conditions are specified on exterior faces, the default boundary condition is equivalent to a zero
gradient, equivalent to 77 - V@|someFaces = O-

If you have ever tried to numerically solve Eq. (10.1), you most likely attempted “explicit finite differencing” with
code something like:

for step in range (steps):
for j in range(cells):
phi_new[]J] = phi_old[j] \
+ (D % dt / dx#x%2) % (phi_old[j+1] - 2 % phi_old[j] + phi_old[j-1])
time += dt

plus additional code for the boundary conditions. In FiPy, you would write

>>> egX = TransientTerm() == ExplicitDiffusionTerm (coeff=D)

The largest stable timestep that can be taken for this explicit 1D diffusion problem is At < Az?/(2D).
We limit our steps to 90% of that value for good measure

>>> timeStepDuration = 0.9 % dx**2 / (2 * D)
>>> steps = 100

If we’re running interactively, we’ll want to view the result, but not if this example is being run automatically as a
test. We accomplish this by having Python check if this script is the “__main__” script, which will only be true if
we explicitly launched it and not if it has been imported by another script such as the automatic tester. The factory
function Viewer () returns a suitable viewer depending on available viewers and the dimension of the mesh.

>>> phiAnalytical = CellVariable (name="analytical value",
mesh=mesh)

>>> if _ name_ == '_ main_ ':
viewer = Viewer (vars=(phi, phiAnalytical),
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datamin=0., datamax=1.)
viewer.plot ()

In a semi-infinite domain, the analytical solution for this transient diffusion problem is given by ¢ = 1 —erf(z/2v/ Dt).
If the SciPy library is available, the result is tested against the expected profile:

>>> x = mesh.cellCenters[0]
>>> t = timeStepDuration * steps

>>> try:
from scipy.special import erf
phiAnalytical.setValue(l - erf(x / (2 % numerix.sqgrt(D * t))))
except ImportError:
print "The SciPy library is not available to test the solution to \
the transient diffusion equation”

We then solve the equation by repeatedly looping in time:

>>> for step in range (steps):
egX.solve (var=phi,
dt=timeStepDuration)

if _ name_ == '_ main_
viewer.plot ()

r .

>>> print phi.allclose(phiAnalytical, atol = 7e-4)

1

>>> if _ name_ == '_ main_ ':
raw_input ("Explicit transient diffusion. Press <return> to proceed...")

1 T T T T
— solution variable
—— analytical value
0.8 b
0.6 b
0.4 R
0.2 b
0 1 1 1 1
0 10 20 30 40 50
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Although explicit finite differences are easy to program, we have just seen that this 1D transient diffusion problem is
limited to taking rather small time steps. If, instead, we represent Eq. (10.1) as:

phi_new([]J] = phi_old[j] \
+ (D % dt / dx*%2) * (phi_new[j+1] - 2 * phi_new[j] + phi_new[]j-11])

it is possible to take much larger time steps. Because phi_new appears on both the left and right sides of the
equation, this form is called “implicit”. In general, the “implicit” representation is much more difficult to program
than the “explicit” form that we just used, but in F7Py, all that is needed is to write

>>> eql = TransientTerm() == DiffusionTerm(coeff=D)

reset the problem

>>> phi.setValue (valueRight)

and rerun with much larger time steps

>>> timeStepDuration = 10
>>> steps //= 10
>>> for step in range (steps):
eql.solve (var=phi,
dt=timeStepDuration)
if _ name_ == '_ _main_ ’:
viewer.plot ()

>>> print phi.allclose(phiAnalytical, atol = 2e-2)

>>> if _ name_ == '_ main_ ':
raw_input ("Implicit transient diffusion. Press <return> to proceed...")
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1 T
—— solution variable
—— analytical value
0.8} E
0.6 i
0.4f 1
0.2} E
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Note that although much larger stable timesteps can be taken with this implicit version (there is, in fact, no limit to
how large an implicit timestep you can take for this particular problem), the solution is less accurate. One way to
achieve a compromise between stability and accuracy is with the Crank-Nicholson scheme, represented by:

phi_new[]J] = phi_old[j] + (D % dt / (2 % dx*x2)) * \
((phi_new[j+1] - 2 % phi_new([]j] + phi_new[j-1])
+ (phi_old[j+1] - 2 * phi_old[j] + phi_old[j-11))

which is essentially an average of the explicit and implicit schemes from above. This can be rendered in FiPy as easily
as

>>> eqCN = egX + eql

We again reset the problem

>>> phi.setValue (valueRight)

and apply the Crank-Nicholson scheme until the end, when we apply one step of the fully implicit scheme to drive
down the error (see, e.g., section 19.2 of [22]).

>>> for step in range(steps - 1):

eqgCN.solve (var=phi,
dt=timeStepDuration)

if _ name_ == "'"_ _main_ ’:

s viewer.plot ()

>>> eqgl.solve (var=phi,

C. dt=timeStepDuration)

>>> if _ name_ == ’_ main__ ':

viewer.plot ()
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>>> print phi.allclose(phiAnalytical, atol = 3e-3)
1

>>> if name == '__main_ ’:
raw_input ("Crank-Nicholson transient diffusion. Press <return> to proceed...")

As mentioned above, there is no stable limit to how large a time step can be taken for the implicit diffusion problem.
In fact, if the time evolution of the problem is not interesting, it is possible to eliminate the time step altogether by
omitting the TransientTerm. The steady-state diffusion equation

DV?¢ =0
is represented in FiPy by
>>> DiffusionTerm(coeff=D) .solve (var=phi)

>>> if name == '__main

viewer.plot ()

’ .

The analytical solution to the steady-state problem is no longer an error function, but simply a straight line, which we
can confirm to a tolerance of 10719,

>>> L, = nx * dx

>>> print phi.allclose(valueLeft + (valueRight - wvalueleft) * x / L,
.. rtol = 1le-10, atol = 1e-10)

1

>>> if _ name_ == ’_ main__ ':

raw_input ("Implicit steady-state diffusion. Press <return> to proceed...")

1 T T T T

— solution variable
—— analytical value

0.4

0.2
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Often, boundary conditions may be functions of another variable in the system or of time.
For example, to have

(1+sint)/2 onxz =0

0= 0 onx =L

we will need to declare time ¢t as a Variable

>>> time = Variable ()

and then declare our boundary condition as a function of this Variable

>>> del phi.faceConstraints

>>> valuelLeft = 0.5 * (1 + numerix.sin(time))
>>> phi.constrain(valueleft, mesh.facesLeft)
>>> phi.constrain (0., mesh.facesRight)

>>> eql = TransientTerm() == DiffusionTerm(coeff=D)

When we update t ime at each timestep, the left-hand boundary condition will automatically update,

>>> dt = .1

>>> while time () < 15:
time.setValue (time () + dt)
eqgl.solve (var=phi, dt=dt)
if _ name_ == '_ _main__ ’:

viewer.plot ()

>>> if name == '__main__ ’:

raw_input ("Time-dependent boundary condition. Press <return> to proceed...

10.1. examples.diffusion.mesh1D
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1 T
—— solution variable
—— analytical value

Many interesting problems do not have simple, uniform diffusivities. We consider a steady-state diffusion problem
V- (DV¢) =0,
with a spatially varying diffusion coefficient

1 for0<z< L/4,
D=401 forL/4<uz<3L/4,
1 for3L/4 < x < L,

and with boundary conditions ¢ = 0 at x = 0 and D a‘f = 1 atx = L, where L is the length of the solution domain.
Exact numerical answers to this problem are found when the mesh has cell centers that lie at /4 and 3L /4, or when
the number of cells in the mesh N; satisfies IV; = 44 + 2, where 7 is an integer. The mesh we’ve been using thus far is
satisfactory, with NV; = 50 and ¢ = 12.

Because FiPy considers diffusion to be a flux from one cell to the next, through the intervening face, we must define
the non-uniform diffusion coefficient on the mesh faces

>>> D = FaceVariable (mesh=mesh, value=1.0)
>>> X = mesh.faceCenters[0]
>>> D.setValue (0.1, where=(L / 4. <= X) & (X < 3. » L / 4.))

The boundary conditions are a fixed value of

>>> valuelLeft = 0.

to the left and a fixed flux of
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>>> fluxRight = 1.

to the right:

>>> phi = CellVariable (mesh=mesh)
>>> phi.faceGrad.constrain([fluxRight], mesh.facesRight)
>>> phi.constrain(valuelLeft, mesh.facesLeft)

‘We re-initialize the solution variable

>>> phi.setValue (0)

and obtain the steady-state solution with one implicit solution step

>>> DiffusionTerm(coeff = D) .solve(var=phi)
The analytical solution is simply

x for0 <z < L/4,
¢=1410x—9L/4 forL/4 <z <3L/4,
x+18L/4 for3L/4 <z <L,

or

>>> x = mesh.cellCenters[0]

>>> phiAnalytical.setValue (x)

>>> phiAnalytical.setValue (10 » x - 9. = L / 4. ,

C. where=(L / 4. <= x) & (x < 3. = L / 4.))
>>> phiAnalytical.setValue(x + 18. = L / 4. ,

. where=3. « L / 4. <= X)

>>> print phi.allclose(phiAnalytical, atol = le-8, rtol = 1le-8)

And finally, we can plot the result

>>> if _ name_ == ’_ main_ ':
Viewer (vars=(phi, phiAnalytical)) .plot ()

raw_input ("Non-uniform steady-state diffusion. Press <return> to proceed..

D)

10.1. examples.diffusion.mesh1D
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solution variable
300 ‘ ‘

T
—— solution variable

250 b

200 1

1501 1

100 1

50 b

Often, the diffusivity is not only non-uniform, but also depends on the value of the variable, such that

% _v.1D(6)V) (102)
ot
With such a non-linearity, it is generally necessary to “sweep” the solution to convergence. This means that each
time step should be calculated over and over, using the result of the previous sweep to update the coefficients of
the equation, without advancing in time. In FiPy, this is accomplished by creating a solution variable that explicitly
retains its “old” value by specifying hasO1d when you create it. The variable does not move forward in time until it
is explicity told to update0O1ld (). In order to compare the effects of different numbers of sweeps, let us create a list
of variables: phi [0] will be the variable that is actually being solved and phi [1] through phi [4] will display the
result of taking the corresponding number of sweeps (phi [1] being equivalent to not sweeping at all).

>>> valueleft = 1.
>>> valueRight = 0.
>>> phi = [

CellVariable (name="solution variable",
mesh=mesh,
value=valueRight,
hasOld=1),

CellVariable (name="1 sweep",
mesh=mesh) ,

CellvVariable (name="2 sweeps",
mesh=mesh),

CellVariable (name="3 sweeps",
mesh=mesh),

CellVariable (name="4 sweeps",
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mesh=mesh)

If, for example,

D = Dy(1 - 9¢)
we would simply write Eq. (10.2) as
>>> DO = 1.
>>> eq = TransientTerm() == DiffusionTerm(coeff=D0 » (1 - phi[0]))

Note: Because of the non-linearity, the Crank-Nicholson scheme does not work for this problem.

We apply the same boundary conditions that we used for the uniform diffusivity cases

>>> phi[0].constrain(valueRight, mesh.facesRight)
>>> phi[0].constrain(valuelLeft, mesh.facesLeft)

Although this problem does not have an exact transient solution, it can be solved in steady-state, with

p(x) =1— i

>>> x = mesh.cellCenters[0]
>>> phiAnalytical.setValue(l. - numerix.sqrt (x/L))

We create a viewer to compare the different numbers of sweeps with the analytical solution from before.

>>> if _ name_ == '_ main_ ':
viewer = Viewer (vars=phi + [phiAnalyticall],
datamin=0., datamax=1.)
viewer.plot ()

As described above, an inner “sweep” loop is generally required for the solution of non-linear or multiple equation
sets. Often a conditional is required to exit this “sweep” loop given some convergence criteria. Instead of using
the solve () method equation, when sweeping, it is often useful to call sweep () instead. The sweep () method
behaves the same way as solve (), but returns the residual that can then be used as part of the exit condition.

We now repeatedly run the problem with increasing numbers of sweeps.

>>> for sweeps in range(l,5):
phi[0] .setValue (valueRight)
for step in range(steps):
# only move forward in time once per time step
phi[0] .updateOld()

# but "sweep" many times per time step
for sweep in range (sweeps) :

res = eg.sweep (var=phi[0],
dt=timeStepDuration)
if _ name_ == '_ _main_ ’:

viewer.plot ()

# copy the final result into the appropriate display variable
phi[sweeps].setValue (phi[0])

if _ name_ == '_ _main___
viewer.plot ()
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raw_input ("Implicit variable diffusity. sweep (s) . \
Residual = . Press <return> to proceed..." % (sweeps, (abs(res))))

As can be seen, sweeping does not dramatically change the result, but the “residual” of the equation (a measure of
how accurately it has been solved) drops about an order of magnitude with each additional sweep.

Attention: Choosing an optimal balance between the number of time steps, the number of sweeps, the number of
solver iterations, and the solver tolerance is more art than science and will require some experimentation on your
part for each new problem.

Finally, we can increase the number of steps to approach equilibrium, or we can just solve for it directly

>>> eq = DiffusionTerm(coeff=D0 * (1 — phi[0]))

>>> phi[0].setValue (valueRight)

>>> res = le+10
>>> while res > le-6:
res = eq.sweep (var=phi[0],

dt=timeStepDuration)

>>> print phi[0].allclose(phiAnalytical, atol = le-1)

>>> if  name == '_ _main__ ’:
viewer.plot ()
raw_input ("Implicit variable diffusity - steady-state. \
Press <return> to proceed...")

1 T T T T

—— solution variable
1 sweep

2 sweeps

3 sweeps

4 sweeps 4
analytical value

40 50
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Fully implicit solutions are not without their pitfalls, particularly in steady state. Consider a localized block of material
diffusing in a closed box.

>>> phi = CellVariable (mesh=mesh, name=r"$\phi$")
>>> phi.value = 0.
>>> phi.setValue(l., where=(x > L/2. - L/10.) & (x < L/2. + L/10.))
>>> if _ name == '__ _main__ ’:
viewer = Viewer (vars=phi, datamin=-0.1, datamax=1.1)

0.8

0.6

0.4

0.2

0.0

We assign no explicit boundary conditions, leaving the default no-flux boundary conditions, and solve

8¢/0t = V- (DV)

>>> D = 1.
>>> eq = TransientTerm() == DiffusionTerm(D)
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>>>
>>>

>>>

dt = 10. * dx**2 / (2 = D)
steps = 200

for step in range (steps):
eq.solve (var=phi, dt=dt)

if _ name_ == '_ _main_ ’:
viewer.plot ()
>>> if  name == '_ main_ ’:
raw_input ("No-flux — transient. \
Press <return> to proceed...")
I I I I
1.0F .
0.8F i
0.6 i
04 i
0.2F i
0.0F i
l l l l
0 10 20 30 40 50

and see that ¢ dissipates to the expected average value of 0.2 with reasonable accuracy.

>>> print numerix.allclose(phi, 0.2, atol=le-5)
True

If we reset the initial condition

>>> phi.value = 0.
>>> phi.setValue(l., where=(x > L/2. - L/10.) & (x < L/2. + L/10.))
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’

>>> if name == main
viewer.plot ()

and solve the steady-state problem

>>> DiffusionTerm(coeff=D)

14

.solve (var=phi)

>>> if _ name_ == '_ _main_ ':
.. viewer.plot ()
>>> if _ name_ == '_ main_ ':
raw_input ("No-flux — stead-state failure. \
Press <return> to proceed...")
>>> print numerix.allclose (phi, 0.0)
True
I I I I
1.0 .
0.8 i
0.6 i
04+ i
02F i
0.0
l l l l
0 10 20 30 40

50

we find that the value is uniformly zero! What happened to our no-flux boundary conditions?
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The problem is that in the implicit discretization of V - (DV¢) = 0,

D __D_

Ax? Ax? 0

¢new

0

__D 2D __D
2z 7 2

Az Az Az new

Jj—1 0
D 2D D
2 2 2

Ax Ax Ax ¢qew

J =10
__D 2D __D
2 2 2

Ax Ax Ax new

J+1 0
__D_ D
Ax? Ax?

new

N-1 0

the initial condition ¢°'¢ no longer appears and ¢ = 0 is a perfectly legitimate solution to this matrix equation.

The solution is to run the transient problem and to take one enormous time step

>>> phi.value = 0.
>>> phi.setValue(l., where=(x > L/2. - L/10.) & (x < L/2. + L/10.))
>>> if _ name_ == '_ _main_ ’:

viewer.plot ()

>>> (TransientTerm() == DiffusionTerm (D)) .solve (var=phi, dt=leb6*dt)
>>> if _ name_ == '_ main_ ':

viewer.plot ()
>>> if  name == '_ main_ ’:

raw_input ("No-flux — steady-state. \
Press <return> to proceed...")

>>> print numerix.allclose(phi, 0.2, atol=le-5)
True
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If this example had been written primarily as a script, instead of as documentation, we would delete every line that
does not begin with either “>>>" or “. . .”, and then delete those prefixes from the remaining lines, leaving:

#!/usr/bin/env python

## This script was derived from
## ’examples/diffusion/meshlD.py’

nx = 50

dx = 1.

mesh = GridlD (nx = nx, dx = dx)

phi = CellVariable (name="solution variable",
mesh=mesh,
value=0)

eq = DiffusionTerm(coeff=D0 * (1 - phi[0]))
phi[0] .setValue (valueRight)
res = le+10
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while res > le-6:
res = eqg.sweep (var=phi[0],
dt=timeStepDuration)

print phi[0O].allclose(phiAnalytical, atol = le-1)

# Expect:

# 1

#

if _ name_ == '_ _main_ ':

viewer.plot ()
raw_input ("Implicit variable diffusity - steady-state. \
Press <return> to proceed...")

Your own scripts will tend to look like this, although you can always write them as doctest scripts if you choose. You
can obtain a plain script like this from some .../example.py by typing:

$ python setup.py copy_script —-From .../example.py —--To myExample.py

at the command line.

Most of the FiPy examples will be a mixture of plain scripts and doctest documentation/tests.

10.2 examples.diffusion.coupled

Solve the biharmonic equation as a coupled pair of diffusion equations.

FiPy has only first order time derivatives so equations such as the biharmonic wave equation written as
0t n 0%v ~0
ozt = o2

cannot be represented as a single equation. We need to decompose the biharmonic equation into two equations that
are first order in time in the following way,

82110 6’01
T2 T
Pui_ Ovy _
Ox? ot

Historically, FiPy required systems of coupled equations to be solved successively, “sweeping” the equations to con-
vergence. As a practical example, we use the following system

0
S = 00190 - V2o,
0
S = Vit + 001V,
subject to the boundary conditions
'U0|w:0 =0 Uo‘$:1 =1
Ul|a::0 =1 Ul‘m:l =0

This system closely resembles the pure biharmonic equation, but has an additional diffusion contribution to improve
numerical stability. The example system is solved with the following block of code using explicit coupling for the
cross-coupled terms.
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>>> from fipy import GridlD, CellVariable, TransientTerm, DiffusionTerm, Viewer

>>> m = GridlD (nx=100, Lx=1.)

>>> v(0 = CellVariable (mesh=m, hasOld=True, value=0.5)
>>> vl CellVariable (mesh=m, hasOld=True, value=0.5)

.facesLeft)
.facesRight)

>>> v(0.constrain (0,
>>> v0.constrain (1,

3 3

.facesLeft)
.facesRight)

>>> vl.constrain (1,
>>> vl.constrain (0,

3 3

>>> eq0 = TransientTerm() == DiffusionTerm(coeff=0.01) - vl.faceGrad.divergence
>>> eql = TransientTerm() == v0.faceGrad.divergence + DiffusionTerm(coeff=0.01)

>>> vi = Viewer ((v0, vl))
>>> for t in range (100):

v0.updateOld ()
vl.updateOld ()

res0 = resl 1el100
while max (res0, resl) > 0.1:
res0 = eg0.sweep (var=v0, dt=le-5)
resl = eqgl.sweep(var=vl, dt=le-5)
if t % 10 ==
vi.plot ()

The uncoupled method still works, but it can be advantageous to solve the two equations simultaneously. In this case,
by coupling the equations, we can eliminate the explicit sources and dramatically increase the time steps:

>>> v0.value = 0.5
>>> vl.value = 0.5
>>> eqnO0 = TransientTerm(var=v0) == DiffusionTerm(0.01, var=v0) - DiffusionTerm(l, var=vl)
>>> eqnl = TransientTerm(var=vl) == DiffusionTerm(l, var=v0) + DiffusionTerm(0.01, wvar=vl)

>>> eqn = egnO0 & eqnl

>>> for t in range(l):
v0.updateOld()
vl1.updateOld()
egn.solve (dt=1.e-3)
vi.plot ()

It is also possible to pose the same equations in vector form:

>>> v = CellVariable (mesh=m, hasOld=True, value=[[0.5], [0.5]], elementshape=(2,))

>>> v.constrain([[0], [1]], m.facesLeft)
>>> v.constrain([[1], [0]], m.facesRight)

>>> eqn = TransientTerm([[1l, O],
[0, 1]]) == DiffusionTerm([[[0.01, -1],
[1, 0.0111D

>>> vi = Viewer ((v[0], v[1]))
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>>> for t in range(l):
v.updateOld()
eqn.solve (var=v, dt=1.e-3)
vi.plot ()

Whether you pose your problem in coupled or vector form should be dictated by the underlying physics. If vy and
v1 represent the concentrations of two conserved species, then it is natural to write two seperate governing equations
and to couple them. If they represent two components of a vector field, then the vector formulation is obviously more
natural. FiPy will solve the same matrix system either way.

10.3 examples.diffusion.mesh20x20

Solve a two-dimensional diffusion problem in a square domain.
This example solves a diffusion problem and demonstrates the use of applying boundary condition patches.

>>> from fipy import =

>>> nx = 20
>>> ny = nx
>>> dx = 1.
>>> dy = dx
>>> I, = dx * nx

>>> mesh = Grid2D (dx=dx, dy=dy, nx=nx, ny=ny)

We create a CellVariable and initialize it to zero:

>>> phi = CellVariable (name = "solution variable",
mesh = mesh,
value = 0.)

and then create a diffusion equation. This is solved by default with an iterative conjugate gradient solver.

>>> D = 1.
>>> eq = TransientTerm() == DiffusionTerm(coeff=D)

We apply Dirichlet boundary conditions

>>> valueTopLeft = 0
>>> valueBottomRight = 1

to the top-left and bottom-right corners. Neumann boundary conditions are automatically applied to the top-right and
bottom-left corners.

>>> X, Y = mesh.faceCenters
>>> facesTopLeft = ((mesh.facesLeft & (Y > L / 2))
R | (mesh.facesTop & (X < L / 2)))
>>> facesBottomRight = ((mesh.facesRight & (Y < L / 2))
| (mesh.facesBottom & (X > L / 2)))

>>> phi.constrain(valueTopleft, facesTopLeft)
>>> phi.constrain(valueBottomRight, facesBottomRight)

We create a viewer to see the results

>>> if _ name_ == '_ _main_ ’:
viewer = Viewer (vars=phi, datamin=0., datamax=1.)
viewer.plot ()
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and solve the equation by repeatedly looping in time:

>>> timeStepDuration = 10 » 0.9 % dxx*x2 / (2 * D)
>>> steps = 10
>>> for step in range (steps):
eq.solve (var=phi,
dt=timeStepDuration)
if _ name_ == '_ main_ ’:
viewer.plot ()

solution variable

We can test the value of the bottom-right corner cell.

solution variable

>>> print numerix.allclose (phi(((L,), (0,))), valueBottomRight, atol = le-2)
1
>>> if _ name_ == '_ main_ ':

raw_input ("Implicit transient diffusion.

Press <return> to proceed...")

We can also solve the steady-state problem directly

>>> DiffusionTerm() .solve (var=phi)
>>> if _ name_ == '_ _main_ ':
viewer.plot ()
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solution variable
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solution variable

and test the value of the bottom-right corner cell.

>>> print numerix.allclose(phi(((L,), (0,))), valueBottomRight, atol = le-2)
1
>>> if _ name_ == '_ main_ ':

raw_input ("Implicit steady-state diffusion. Press <return> to proceed...")

10.4 examples.diffusion.circle

Solve the diffusion equation in a circular domain meshed with triangles.

This example demonstrates how to solve a simple diffusion problem on a non-standard mesh with varying boundary
conditions. The Gmsh package is used to create the mesh. Firstly, define some parameters for the creation of the mesh,

>>> cellSize 0.05

>>> radius = 1.

The cellSize is the preferred edge length of each mesh element and the radius is the radius of the circular mesh domain.
In the following code section a file is created with the geometry that describes the mesh. For details of how to write
such geometry files for Gmsh, see the gmsh manual.

The mesh created by Gmsh is then imported into FiPy using the Gmsh2D object.

>>> from fipy import =«
>>> mesh = Gmsh2D ("""’
cellSize = % (cellSize)qg;
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radius = % (radius)g;

Point (1) = {0, 0, 0, cellSize};

Point (2) = {-radius, 0, 0, cellSize};
Point (3) = {0, radius, 0, cellSize};
Point (4) = {radius, 0, 0, cellSize};
Point (5) = {0, -radius, 0, cellSize};
Circle (6) {2, 1, 3};

Circle(7) = {3, 1, 4};

Circle(8) = {4, 1, 5};

Circle(9) = {5, 1, 2};

Line Loop(10) = {6, 7, 8, 9};

Plane Surface(ll) = {10};

rrr % locals ())

Using this mesh, we can construct a solution variable

>>> phi = CellVariable (name = "solution variable",
mesh = mesh,
value = 0.)

We can now create a Viewer to see the mesh

>>> viewer = None
>>> if name == '__main_ ’:
try:

viewer = Viewer (vars=phi, datamin=-1, datamax=1.)
viewer.plotMesh ()
raw_input ("Irregular circular mesh. Press <return> to proceed...")

except:
print "Unable to create a viewer for an irregular mesh (try Gist2DViewer, Matplotlib2DVi
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We set up a transient diffusion equation

NI T e iv N N
s

! ______-___________|1__

Q ol =
0

7 T

Q 0
— o

>>> D

DiffusionTerm (coeff=D)

= TransientTerm/()

>>> eq

The following line extracts the x coordinate values on the exterior faces. These are used as the boundary condition

fixed values.

= mesh.faceCenters

Y

>>> X,

>>> phi.constrain (X, mesh.exteriorFaces)

We first step through the transient problem

(2 = D)

>>> timeStepDuration = 10 » 0.9 % cellSizex*x*2 /

10
>>> for step in range(steps):

>>> steps

=phi,

eg.solve (var

timeStepDuration)

dt
if viewer is not None:

viewer.plot ()
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If we wanted to plot or analyze the results of this calculation with another application, we could export tab-separated-
values with

TSVViewer (vars=(phi, phi.grad)) .plot (filename="myTSV.tsv")

x % solution variable solution variable_grad_x solution variable_grad_y
0.975559734792414 0.0755414402612554 0.964844363287199 -0.229687917881182
0.0442864953037566 0.79191893162384 0.0375859836421991 -0.773936613923853
0.0246775505084069 0.771959648896982 0.020853932412869 -0.723540342405813
0.223345558247991 -0.807931073108895 0.203035857140125 -0.777466238738658
-0.00726763301939488 -0.775978916110686 -0.00412895434496877 -0.650055516507232
-0.0220279064527904 -0.187563765977912 -0.012771874945585 -0.35707168379437
0.111223320911545 -0.679586798311355 0.0911595298310758 -0.613455176718145
-0.78996770899909 -0.0173672729866294 -0.693887874335319 -1.00671109050419
-0.703545986179876 -0.435813500559859 -0.635004192597412 -0.896203033957194
0.888641841567831 -0.408558914368324 0.877939107374768 -0.32195762184087
0.38212257821916 -0.51732949653553 0.292889724306196 -0.854466141879776
-0.359068256998365 0.757882581524374 -0.323541041763627 -0.870534227755687
-0.459673905457569 -0.701526587772079 -0.417577664032421 -0.725460726303266
-0.338256179134518 -0.523565732643067 -0.254030052182524 -0.923505840608445
0.87498754712638 0.174119064688993 0.836057900916614 -1.11590500805745 —
-0.484106960369249 0.0705987421869745 -0.319827850867342 -0.867894407968447
-0.0221203060940465 -0.216026820080053 -0.0152729438559779 -0.341246696530392

The values are listed at the cell centers. Particularly for irregular meshes, no specific ordering should be relied upon.
Vector quantities are listed in multiple columns, one for each mesh dimension.
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This problem again has an analytical solution that depends on the error function, but it’s a bit more complicated due
to the varying boundary conditions and the different horizontal diffusion length at different vertical positions

>>> x, y = mesh.cellCenters
>>> t = timeStepDuration x steps

>>> phiAnalytical = CellVariable (name="analytical value",
mesh=mesh)

>>> x0 = radius * numerix.cos (numerix.arcsin(y))
>>> try:
from scipy.special import erf
## This function can sometimes throw nans on 0S X
## see http://projects.scipy.orqg/scipy/scipy/ticket/325
phiAnalytical.setValue (x0 * (erf((x0+x) / (2 » numerix.sqrt(D * t)))
- erf ((x0-x) / (2 » numerix.sqrt(D x t)))))
except ImportError:
print "The SciPy library is not available to test the solution to \
the transient diffusion equation”

>>> print phi.allclose(phiAnalytical, atol = 7e-2)
1

>>> if name == '__main_ ’:
raw_input ("Transient diffusion. Press <return> to proceed...")

As in the earlier examples, we can also directly solve the steady-state diffusion problem.

>>> DiffusionTerm(coeff=D) .solve (var=phi)

The values at the elements should be equal to their x coordinate

>>> print phi.allclose(x, atol = 0.03)
1

Display the results if run as a script.

>>> if viewer is not None:
viewer.plot ()
raw_input ("Steady-state diffusion. Press <return> to proceed...")
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10.5 examples.diffusion.electrostatics

Solve the Poisson equation in one dimension.

The Poisson equation is a particular example of the steady-state diffusion equation. We examine a few cases in one
dimension.

>>> from fipy import =«

>>> nx = 200

>>> dx = 0.01

>>> L = nx * dx

>>> mesh = GridlD(dx = dx, nx = nx)

Given the electrostatic potential ¢,

>>> potential = CellVariable (mesh=mesh, name=’'potential’, value=0.)
the permittivity e,

>>> permittivity = 1

the concentration C; of the j™ component with valence z; (we consider only a single component C.~ with valence
with z,- = —1)
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>>> electrons = CellVariable (mesh=mesh, name=’"e-')
>>> electrons.valence = -1

and the charge density p,

>>> charge = electrons x electrons.valence

>>> charge.name = "charge"

The dimensionless Poisson equation is

V- (Vo) =—p=—)_ 2C;
j=1

>>> potential.equation = (DiffusionTerm(coeff = permittivity)
+ charge == 0)

Because this equation admits an infinite number of potential profiles, we must constrain the solution by fixing the
potential at one point:

>>> potential.constrain(0., mesh.facesLeft)

First, we obtain a uniform charge distribution by setting a uniform concentration of electrons C,- = 1.

>>> electrons.setValue(1l.)

and we solve for the electrostatic potential

>>> potential.equation.solve (var=potential)

This problem has the analytical solution

X
V)= T —2
2
>>> X = mesh.cellCenters[0]
>>> analytical = CellVariable (mesh=mesh, name="analytical solution",
value=(x**2) /2 — 2%x)
which has been satisifactorily obtained
>>> print potential.allclose(analytical, rtol = 2e-5, atol = 2e-5)

1

If we are running the example interactively, we view the result

>>> if _ name_ == '_ main_ ':
viewer = Viewer (vars=(charge, potential, analytical))
viewer.plot ()
raw_input ("Press any key to continue...")
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Next, we segregate all of the electrons to right side of the domain

0 forxz < L/2,

C. =
¢ 1 forxz > L/2.

>>> x = mesh.cellCenters[0]
>>> electrons.setValue (0.)
>>> electrons.setValue(l., where=x > L / 2.)

and again solve for the electrostatic potential

>>> potential.equation.solve (var=potential)
which now has the analytical solution

—T forz < L/2,

x) = :
V(@ CD o forz > L/2.

>>> analytical.setValue (-x)

>>> analytical.setValue (((x-1)*%2)/2 - x, where=x > L/2)
>>> print potential.allclose(analytical, rtol = 2e-5, atol = 2e-5)
1

and again view the result
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== '__main__ ’:

>>> if name =

viewer.plot ()
raw_input ("Press any key to continue...")

0 T
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0.2 —— analytical solution i

-0.4F b

-1.21 b

-1.4F i

Finally, we segregate all of the electrons to the left side of the domain

1 forz < L/2,

C. =
¢ 0 forx>L/2.

>>> electrons.setValue(l.)
>>> electrons.setValue (0., where=x > L / 2.)

and again solve for the electrostatic potential

>>> potential.equation.solve (var=potential)
which has the analytical solution

2 _ 4 forz < L/2,
forx > L/2.
We again verify that the correct equilibrium is attained

>>> analytical.setValue ((xx%2)/2 — x)
>>> analytical.setValue(-0.5, where=x > L / 2)
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>>> print potential.allclose(analytical, rtol = 2e-5, atol = 2e-5)
1

and once again view the result

_ ’

>>> if name == main :
viewer.plot ()
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10.6 examples.diffusion.nthOrder.input4thOrder1D

Solve a fourth-order diffusion problem.

This example uses the Di f fusionTerm class to solve the equation
o' _
ort

on a 1D mesh of length

>>> L = 1000.

We create an appropriate mesh

>>> from fipy import =«

>>> nx = 500
>>> dx = L / nx
>>> mesh = GridlD (dx=dx, nx=nx)

10.6. examples.diffusion.nthOrder.input4thOrder1D
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and initialize the solution variable to 0

>>> var = CellVariable (mesh=mesh, name=’solution variable’)
For this problem, we impose the boundary conditions:

¢p=a; atx=0

99
— =ag atx =1L
or
9%¢
— =a3 atx=0
02
96
— =4 atx=L.
ox3
or
>>> alphal = 2.
>>> alpha2 = 1.
>>> alpha3 = 4.
>>> alpha4 = -3.
>>> BCs = (NthOrderBoundaryCondition (faces=mesh.facesLeft, value=alpha3, order=2),
NthOrderBoundaryCondition (faces=mesh.facesRight, value=alpha4, order=3))
>>> var.faceGrad.constrain([alpha2], mesh.facesRight)

>>> var.constrain (alphal, mesh.facesLeft)

We initialize the steady-state equation

>>> eq = DiffusionTerm(coeff=(1, 1)) == 0

and use the LinearLUSolver for stability.
We perform one implicit timestep to achieve steady state

>>> eq.solve (var=var,
boundaryConditions=BCs,
solver=GeneralSolver())

The analytical solution is:

Qg4 ag Qg4
¢:—m3+—x2+(ag——LQ—agL)w—l—oq
6 2 2
or
>>> analytical = CellVariable (mesh=mesh, name=’analytical value’)
>>> x = mesh.cellCenters[0]

>>> analytical.setValue (alphad / 6. % x%x*3 + alpha3 / 2. % x*%2 + \
(alpha2 - alpha4 / 2. * Lxx2 - alpha3 * L) % x + alphal)

>>> print var.allclose(analytical, rtol=le-4)
1

If the problem is run interactively, we can view the result:

>>> if name == '__main_ ’:
viewer = Viewer (vars=(var, analytical))
viewer.plot ()
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10.7 examples.diffusion.anisotropy

Solve the diffusion equation with an anisotropic diffusion coefficient.

We wish to solve the problem

0
af(f = 0;1';0;¢

on a circular domain centred at (0, 0). We can choose an anisotropy ratio of 5 such that

, {02 0
= (]
A new matrix is formed by rotating I'"" such that

R= (S o)
and
I'= RI'R"
In the case of a point source at (0, 0) a reference solution is given by,

1 ([ x? y?
exp (—@ (r:m + r*))

drt\/Tiel

¢(X;}ct)::Q

where (X,Y)" = R (z,y)" and Q is the initial mass.

1000
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>>> from fipy import =«

Import a mesh previously created using Gmsh.

>>> import os
>>> mesh = Gmsh2D (os.path.splitext (__file_ ) [0] + ' .msh’, communicator=serialComm)

Set the centermost cell to have a value.

>>> var = CellVariable (mesh=mesh, has0ld=1)
>>> x, y = mesh.cellCenters
>>> var[numerix.argmin(x*+2 + yxx2)] = 1.

Choose an orientation for the anisotropy.

>>> theta = numerix.pi / 4.
>>> rotationMatrix = numerix.array (((numerix.cos (theta), numerix.sin(theta)), \
(-numerix.sin (theta), numerix.cos(theta))))

>>> gamma_prime = numerix.array(((0.2, 0.), (0., 1.)))
>>> DOT = numerix.NUMERIX.dot
>>> gamma = DOT (DOT (rotationMatrix, gamma_prime), numerix.transpose (rotationMatrix))
Make the equation, viewer and solve.
>>> eqn = TransientTerm() == DiffusionTermCorrection ((gamma,))
>>> if _ name_ == ’_ main_ ':

viewer = Viewer (var, datamin=0.0, datamax=0.001)
>>> mass = float (var.cellVolumeAverage x numerix.sum(mesh.cellVolumes))
>>> time = 0
>>> dt=0.00025
>>> for i1 in range (20):

var.updateOld ()

res = 1.

while res > le-2:

res = eqn.sweep (var, dt=dt)
if _ name_ == '_ _main__ ’:
viewer.plot ()

time += dt
Compare with the analytical solution (within 5% accuracy).
>>> X, Y = numerix.dot (mesh.cellCenters, CellVariable (mesh=mesh, rank=2, value=rotationMatrix))
>>> solution = mass * numerix.exp (- (X+**2 / gamma_prime[0] [0] + Y*+2 / gamma_prime[1][1]) / (4 * time)
>>> print max (abs ((var - solution) / max(solution))) < 0.08
True
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Convection Examples

examples.convection.exponentiallD.meshlD Solve the steady-state convection-diffusion equation in one di
examples.convection.exponentiallDSource.meshlD Solve the steady-state convection-diffusion equation with a co
examples.convection.robin Solve an advection-diffusion equation with a Robin boundary
examples.convection.source Solve a convection problem with a source.

11.1 examples.convection.exponentialiD.mesh1D

Solve the steady-state convection-diffusion equation in one dimension.

This example solves the steady-state convection-diffusion equation given by

V- (DV¢ +ii¢) =0

with coefficients D = 1 and @ = 1013, or

>>> diffCoeff
>>> convCoeff

Il
—

(10.,)

We define a 1D mesh

>>> from fipy import =«

>>> L = 10.
>>> nx = 10

>>> mesh = GridlD (dx=L / nx, nx=nx)

>>> valuelLeft = 0.
>>> valueRight = 1.

The solution variable is initialized to valueLeft:

>>> var = CellVariable (mesh=mesh, name="variable™)

and impose the boundary conditions

0 atx =0,
1 atx =1,

<
I

with

mesh.facesLeft)
mesh.facesRight)

>>> var.constrain (valueleft,
>>> var.constrain(valueRight,
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The equation is created with the DiffusionTerm and ExponentialConvectionTerm. The scheme used by
the convection term needs to calculate a Peclet number and thus the diffusion term instance must be passed to the
convection term.

>>> eq = (DiffusionTerm(coeff=diffCoeff)
+ ExponentialConvectionTerm(coeff=convCoeff))

More details of the benefits and drawbacks of each type of convection term can be found in Numerical Schemes. Es-
sentially, the ExponentialConvectionTerm and PowerLawConvectionTerm will both handle most types
of convection-diffusion cases, with the PowerLawConvectionTerm being more efficient.

We solve the equation

>>> eq.solve (var=var)

and test the solution against the analytical result

1 —exp(—~ugzz/D)

¢= 1 —exp(—u,L/D)
or
>>> axis = 0
>>> x = mesh.cellCenters[axis]
>>> CC = 1. - numerix.exp (-convCoefflaxis] » x / diffCoeff)
>>> DD = 1. - numerix.exp (-convCoefflaxis] » L / diffCoeff)

>>> analyticalArray = CC / DD
>>> print var.allclose(analyticalArray)

If the problem is run interactively, we can view the result:

>>> if name == '__main_ ’:
viewer = Viewer (vars=var)
viewer.plot ()

11.2 examples.convection.exponentialiDSource.mesh1D

Solve the steady-state convection-diffusion equation with a constant source.

Like examples.convection.exponentiallD.meshlD this example solves a steady-state convection-
diffusion equation, but adds a constant source, Sy = 1, such that

V- (DV¢+ i)+ Sy =0.

>>> diffCoeff
>>> convCoeff =
>>> sourceCoeff

Il
I~

We define a 1D mesh

>>> from fipy import =«

>>> nx = 1000
>>> L = 10.
>>> mesh = GridlD (dx=L / 1000, nx=nx)
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>>> valueleft = 0.
>>> valueRight = 1.

The solution variable is initialized to valueLeft:

>>> var = CellVariable (name="variable", mesh=mesh)
and impose the boundary conditions

0 atx =0,
1 atx =1,
with

>>> var.constrain (valueLeft, mesh.faceslLeft)
>>> var.constrain(valueRight, mesh.facesRight)

We define the convection-diffusion equation with source

>>> eq = (DiffusionTerm(coeff=diffCoeff)
+ ExponentialConvectionTerm (coeff=convCoeff)
+ sourceCoeff)

>>> eq.solve (var=var,
solver=DefaultAsymmetricSolver (tolerance=1.e-15,

and test the solution against the analytical result:

Sox Soz\ 1 —exp(—ugzx/D)
p=——"—4+14+—
Uy ( Uy ) 1 —exp(—u,L/D)
or
>>> axis = 0
>>> x = mesh.cellCenters[axis]
>>> AA = —-sourceCoeff x x / convCoeff[axis]
>>> BB = 1. + sourceCoeff * L / convCoeffl[axis]
>>> CC = 1. - numerix.exp(-convCoefflaxis] » x / diffCoeff)
>>> DD = 1. - numerix.exp (-convCoefflaxis] » L / diffCoeff)

>>> analyticalArray = AA + BB = CC / DD
>>> print var.allclose(analyticalArray, rtol=le-4, atol=le-4)

If the problem is run interactively, we can view the result:

’ .

>>> if name == '__ _main
viewer = Viewer (vars=var)
viewer.plot ()

11.3 examples.convection.robin

Solve an advection-diffusion equation with a Robin boundary condition.

iterations=10000))

This example demonstrates how to apply a Robin boundary condition to an advection-diffusion equation. The equation

11.3. examples.convection.robin
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we wish to solve is given by,

0%C oC
r=0: P_—Z—CHDC
oC
=1:
T I =0

The analytical solution for this equation is given by,

2P exp (£2) [(P—&—A)ex (4 (z— 1)) (P—A)exp (-4 (z—1))]

C(x) =
) (Pt AP exp (2) (P~ AV exp (2)

where

A=+/P+4D?

>>> from fipy import =«

>>> nx = 100

>>> dx = 1.0 / nx

>>> mesh = GridlD (nx=nx, dx=dx)
>>> C = CellVariable (mesh=mesh)
>>> D = 2.0

>>> P = 3.0

>>> C.faceGrad.constrain([-P + P » C.faceValue], mesh.facesLeft)
>>> C.faceGrad.constrain([0], mesh.facesRight)

>>> eq = PowerLawConvectionTerm((P,)) == \
DiffusionTerm() - ImplicitSourceTerm(D)
>>> A = numerix.sqrt (Px*2 + 4 x D)

>>> x = mesh.cellCenters[0]

>>> CAnalytical = CellVariable (mesh=mesh)
>>> CAnalytical.setValue (2 * P * numerix.exp(P * x / 2) % ((P + A) % numerix.exp(A / 2 + (1 - x))
- (P - A) * numerix.exp(-A / 2 x(1 - x)))/
((P + A)x#2+xnumerix.exp(A / 2)— (P — A)*#%2 % numerix.exp(-A / 2)))
>>> if _ name_ == '_ _main_ ’:
C.name = ’C’

viewer = Viewer (vars=(C, CAnalytical))

>>> if _ name_ == ’_ main__ ':
restol = le-5
anstol = le-3
else:

restol = 0.5
anstol = 0.15

>>> res = le+10
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>>> while res > restol:
res = eqg.sweep (var=C)
if _ name_ == '_ main___
viewer.plot ()

r .

>>> print C.allclose(CAnalytical, rtol=anstol, atol=anstol)
True

11.4 examples.convection.source

Solve a convection problem with a source.

This example solves the equation

¢

E +ap=0
with ¢ (0) = 1 at x = 0. The boundary condition at = L is an outflow boundary condition requiring the use of
an artificial constraint to be set on the right hand side faces. Exterior faces without constraints are considered to have
zero outflow. An ImplicitSourceTerm object will be used to represent this term. The derivative of ¢ can be
represented by a ConvectionTerm with a constant unitary velocity field from left to right. The following is an
example code that includes a test against the analytical result.

>>> from fipy import =«

>>> L = 10.

>>> nx = 5000
>>> dx = L / nx
>>> mesh = GridlD (dx=dx, nx=nx)

>>> phi0 = 1.0

>>> alpha = 1.0

>>> phi = CellVariable (name=r"$\phis$", mesh=mesh, value=phi0)

>>> solution = CellVariable (name=r"solution", mesh=mesh, value=phi0 * numerix.exp(-alpha * mesh.cell(

>>> if _ name_ == "_ _main_ ":
viewer = Viewer (vars=(phi, solution))
viewer.plot ()
raw_input ("press key to continue")

>>> phi.constrain(phi0O, mesh.facesLeft)
>>> ## fake outflow condition
>>> phi.faceGrad.constrain([0], mesh.facesRight)

>>> eq = PowerLawConvectionTerm((l,)) + ImplicitSourceTerm(alpha)

>>> eq.solve (phi)

>>> print numerix.allclose(phi, phi0 % numerix.exp(-alpha * mesh.cellCenters([0]), atol=le-3)
True

>>> if _ name_ == "_ _main_ ":
viewer = Viewer (vars=(phi, solution))
viewer.plot ()
raw_input ("finished")
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Phase Field Examples

examples.phase.simple Solve a phase-field (Allen-Cahn) problem in one-dimension.
examples.phase.binaryCoupled Simultaneously solve a phase-field evolution and solute diffusion problem in
examples.phase.quaternary Solve a phase-field evolution and diffusion of four species in one-dimension.
examples.phase.anisotropy Solve a dendritic solidification problem.
examples.phase.impingement .mesh40x1 Solve for the impingement of two grains in one dimension.
examples.phase.impingement .mesh20x20 Solve for the impingement of four grains in two dimensions.
examples.phase.polyxtal Solve the dendritic growth of nuclei and subsequent grain impingement.
examples.phase.polyxtalCoupled Simultaneously solve the dendritic growth of nuclei and subsequent grain im;

12.1 examples.phase.simple

Solve a phase-field (Allen-Cahn) problem in one-dimension.

To run this example from the base FiPy directory, type python examples/phase/simple/input.py at the
command line. A viewer object should appear and, after being prompted to step through the different examples, the
word finished in the terminal.

This example takes the user through assembling a simple problem with FiPy. It describes a steady 1D phase field
problem with no-flux boundary conditions such that,

199 _
My ot

ke V2h — g—f; (12.1)

For solidification problems, the Helmholtz free energy is frequently given by

0% T — Ty

7(6.T) = 59(8) + Lo

5 p(®)

where W is the double-well barrier height between phases, L, is the latent heat, T is the temperature, and T’ is the
melting point.

One possible choice for the double-well function is
9(¢) = ¢*(1 - ¢)?
and for the interpolation function is
p(¢) = ¢°(6¢° — 15¢ + 10).

We create a 1D solution mesh

>>> from fipy import =«
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>>> L = 1.

>>> nx = 400

>>> dx = L / nx

>>> mesh = GridlD(dx = dx, nx

We create the phase field variable

>>> phase = CellVariable (name =

mesh

and set a step-function initial condition

>>> x = mesh.cellCenters|[0]
>>> phase.setValue(1l.)

"phase",
mesh)
1 f < L/2
¢ = orz< L2 o
0 forx>L/2

>>> phase.setValue (0., where=x > L/2)

If we are running interactively, we’ll want a viewer to see the results

>>> if _ name_ == '_ _main_ ’:
viewer = Viewer (vars (phase,))
viewer.plot ()
raw_input ("Initial condition. Press <return> to proceed...")
1.0 ||||||||||||||J||||||||||||||||||||||||I_
ne— —
06— —
04— —
nz— —
D.D_IIII|IIII|IIII|IIII nIIII|IIII|IIII|'I-‘III|
100 200 300 400
We choose the parameter values,
>>> kappa = 0.0025
>>> W = 1.
>>> Lv = 1.
>>> Tm = 1.
>>> T = Tm
>>> enthalpy = Lv * (T - Tm) / Tm
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We build the equation by assembling the appropriate terms. Since, with T' = T, we are interested in a steady-state
solution, we omit the transient term (1/M) %.

The analytical solution for this steady-state phase field problem, in an infinite domain, is

¢ = 1 [1 — tanh r— e L/2 (12.2)

2 2\/k/W

or

>>> x = mesh.cellCenters[0]
>>> analyticalArray = 0.5% (1 — numerix.tanh((x - L/2)/(2+numerix.sqrt (kappa/W))))

We treat the diffusion term .,V ?¢ implicitly,

Note: “Diffusion” in FiPy is not limited to the movement of atoms, but rather refers to the spontaneous spreading of
any quantity (e.g., solute, temperature, or in this case “phase”) by flow “down” the gradient of that quantity.

The source term is

of w T—Ty
§S=—"f = g(¢) - L—y
56 =59 (0) = L= 20 (9)
T-Ty
= — |Wo(1 = 9)(1 ~20) + L———306(1 — §)°
M
=mgd(1 - ¢)
where mg = —[W(1 — 2¢) + 30¢(1 — ¢) L7,
The simplest approach is to add this source explicitly
>>> mPhi = —((1 - 2 » phase) = W + 30 % phase % (1 - phase) *» enthalpy)
>>> S0 = mPhi * phase * (1 - phase)
>>> eq = SO0 + DiffusionTerm(coeff=kappa)
After solving this equation
>>> eqg.solve (var = phase, solver=DummySolver ())

we obtain the surprising result that ¢ is zero everywhere.

>>> print phase.allclose(analyticalArray, rtol = le-4, atol = le-4)
0
>>> if _ name_ == '_ main_ ':
viewer.plot ()
raw_input ("Fully explicit source. Press <return> to proceed...")

12.1. examples.phase.simple 99



FiPy Manual, Release 3.1

1.|:|_|”||||”HIIIIIII”HIIHI |||||||||I_
o6 - -
05— —
00— Z B -
05— -
-1.|:|__||||||||||||||||||||||||||||||||||||||||__

100 200 300 400

On inspection, we can see that this occurs because, for our step-function initial condition, m¢ = 0 everwhere, hence
we are actually only solving the simple implicit diffusion equation r45V?2¢ = 0, which has exactly the uninteresting
solution we obtained.

The resolution to this problem is to apply relaxation to obtain the desired answer, i.e., the solution is allowed to relax
in time from the initial condition to the desired equilibrium solution. To do so, we reintroduce the transient term from
Equation (12.1)

>>> eq = TransientTerm() == DiffusionTerm(coeff=kappa) + SO

>>> phase.setValue(1l.)
>>> phase.setValue (0., where=x > L/2)

>>> for i in range(13):
eg.solve (var = phase, dt=1.)
if _ name_ == '_ _main__ ’:
viewer.plot ()

After 13 time steps, the solution has converged to the analytical solution

>>> print phase.allclose (analyticalArray, rtol = le-4, atol = le-4)
1
>>> if  name == '_ _main__ ’:

raw_input ("Relaxation, explicit. Press <return> to proceed...")
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Note: The solution is only found accurate to ~ 4.3 x 10~° because the infinite-domain analytical solution (12.2) is
not an exact representation for the solution in a finite domain of length L.

Setting fixed-value boundary conditions of 1 and O would still require the relaxation method with the fully explicit
source.

Solution performance can be improved if we exploit the dependence of the source on ¢. By doing so, we can make
the source semi-implicit, improving the rate of convergence over the fully explicit approach. The source can only be
semi-implicit because we employ sparse linear algebra routines to solve the PDEs, i.e., there is no fully implicit way
to represent a term like ¢* in the linear set of equations Mq’_)' —b=0.

By linearizing a source as S = Sy — 51 ¢, we make it more implicit by adding the coefficient S; to the matrix diagonal.
For numerical stability, this linear coefficient must never be negative.

There are an infinite number of choices for this linearization, but many do not converge very well. One choice is that
used by Ryo Kobayashi:

>>> S0 = mPhi x phase * (mPhi > 0)

>>> S1 = mPhi * ((mPhi < 0) - phase)
>>> eq = DiffusionTerm(coeff=kappa) + SO \
+ ImplicitSourceTerm(coeff = S1)

Note: Because mPhi is a variable field, the quantities (mPhi > 0) and (mPhi < 0) evaluate to variable fields
of True and False, instead of single boolean values.

This expression converges to the same value given by the explicit relaxation approach, but in only 8 sweeps (note that
because there is no transient term, these sweeps are not time steps, but rather repeated iterations at the same time step
to reach a converged solution).

Note: We use solve () instead of sweep () because we don’t care about the residual. Either function would work,
but solve () is a bit faster.

>>> phase.setValue(l.)
>>> phase.setValue (0., where=x > L/2)
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>>> for i in range(8):
. eqg.solve (var = phase)
>>> print phase.allclose(analyticalArray, rtol = le-4, atol = le-4)

1
>>> if name == '__main_ ’:

viewer.plot ()
raw_input ("Kobayashi, semi-implicit. Press <return> to proceed...")

In general, the best convergence is obtained when the linearization gives a good representation of the relationship
between the source and the dependent variable. The best practical advice is to perform a Taylor expansion of the source

about the previous value of the dependent variable such that S = Sy + % (¢ — doa) = (S— % Jold + % 0.
old old

Now, if our source term is represented by S = Sy + S1¢, then S = %‘ " and Sy = (S — %qﬁ)o]d = Sold — S1Pold-

In this way, the linearized source will be tangent to the curve of the actual source as a function of the dependendent
variable.

For our source, S = mgp(1 — ¢),

oS _ Omyg - B

96 87¢¢(1 ¢) + me(l — 2¢)
and

8m¢ _ T— TM

Tqb =2W —30(1 — 2¢)Lﬁ,
or

>>> dmPhidPhi = 2 « W - 30 % (1 - 2 % phase) % enthalpy
>>> S1 = dmPhidPhi * phase % (1 - phase) + mPhi » (1 - 2 * phase)

>>> S0 = mPhi * phase * (1 - phase) - S1 * phase
>>> eq = DiffusionTerm(coeff=kappa) + SO \
+ ImplicitSourceTerm(coeff = S1)

Using this scheme, where the coefficient of the implicit source term is tangent to the source, we reach convergence in
only 5 sweeps

>>> phase.setValue(l.)
>>> phase.setValue (0., where=x > L/2)

>>> for i in range(5):

. eg.solve (var = phase)
>>> print phase.allclose (analyticalArray, rtol = le-4, atol = le-4)
1
>>> if  name == '_ main_ ’:

viewer.plot ()
raw_input ("Tangent, semi-implicit. Press <return> to proceed...")

Although, for this simple problem, there is no appreciable difference in run-time between the fully explicit source and
the optimized semi-implicit source, the benefit of 60% fewer sweeps should be obvious for larger systems and longer
iterations.

This example has focused on just the region of the phase field interface in equilibrium. Problems of interest, though,
usually involve the dynamics of one phase transforming to another. To that end, let us recast the problem using physical
parameters and dimensions. We’ll need a new mesh
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>>> nx = 400

>>> dx = 5e-6 # cm

>>> L = nx % dx

>>> mesh = GridlD(dx = dx, nx = nx)

and thus must redeclare ¢ on the new mesh

>>> phase = CellVariable (name="phase",
mesh=mesh,

Ce. hasO0ld=1)

>>> x = mesh.cellCenters[0]

>>> phase.setValue(l.)

>>> phase.setValue (0., where=x > L/2)

We choose the parameter values appropriate for nickel, given in [27]

>>> Lv = 2350 # J / cm##3

>>> Tm = 1728. # K

>>> T = Variable (value=Tm)

>>> enthalpy = Lv = (T — Tm) / Tm # J / cm#x3

The parameters of the phase field model can be related to the surface energy o and the interfacial thickness § by

Kk = 600
6o
W=
Tnp
Mo = 515

We take § ~ Azx.

>>> delta = 1.5 % dx

>>> sigma = 3.7e-5 # J / cm##*2

>>> beta = 0.33 # cm / (K s)

>>> kappa = 6 * sigma x delta # J / cm

>>> W = 6 » sigma / delta # J / cm##3

>>> Mphi = Tm * beta / (6. = Lv * delta) # cm*+3 / (J s)

>>> if _ name_ == '_ _main_ ':
displacement = L = 0.1
else:
displacement = L % 0.025

>>> analyticalArray = CellVariable (name="tanh", mesh=mesh,
value=0.5 % (1 — numerix.tanh((x — (L / 2. + displacement))
/ (2 * delta))))

and make a new viewer

>>> if _ name_ == '_ _main_ ’:
viewer2 = Viewer (vars = (phase, analyticalArray))
viewer2.plot ()

Now we can redefine the transient phase field equation, using the optimal form of the source term shown above

>>> mPhi = —((1 - 2 * phase) « W + 30 x phase » (1 - phase) * enthalpy)
>>> dmPhidPhi = 2 « W - 30 = (1 - 2 % phase) % enthalpy
>>> S1 = dmPhidPhi * phase % (1 - phase) + mPhi » (1 - 2 * phase)

12.1. examples.phase.simple 103



FiPy Manual, Release 3.1

>>> S0 = mPhi * phase * (1 - phase) - S1 * phase
>>> eq = TransientTerm(coeff=1/Mphi) == DiffusionTerm(coeff=kappa) \
+ S0 + ImplicitSourceTerm(coeff = S1)

In order to separate the effect of forming the phase field interface from the kinetics of moving it, we first equilibrate at
the melting point. We now use the sweep () method instead of solve () because we require the residual.

>>> timeStep = le-6
>>> for i in range(10):

phase.updateOld()

res = le+l0

while res > le-5:

res = eq.sweep (var=phase, dt=timeStep)

>>> if _ name_ == ’_ _main__ ':

viewer2.plot ()

and then quench by 1 K

>>> T.setValue(T() - 1)

In order to have a stable numerical solution, the interface must not move more than one grid point per time step, we
thus set the timestep according to the grid spacing Az, the linear kinetic coefficient 3, and the undercooling |T,,, — T
Again we use the sweep () method as a replacement for solve ().

>>> velocity = beta » abs(Tm - T()) # cm / s
>>> timeStep .1 % dx / velocity # s
>>> elapsed = 0
>>> while elapsed < displacement / velocity:
phase.updateOld()
res = le+l0
while res > le-5:

res = eq.sweep (var=phase, dt=timeStep)
elapsed += timeStep
if _ name_ == '_ _main_ ’:

viewer2.plot ()

A hyperbolic tangent is not an exact steady-state solution given the quintic polynomial we chose for the p function,
but it gives a reasonable approximation.

>>> print phase.allclose(analyticalArray, rtol = 5, atol = 2e-3)
1

If we had made another common choice of p(¢) = ¢*(3 — 2¢), we would have found much better agreement, as
that case does give an exact tanh solution in steady state. If SciPy is available, another way to compare against the
expected result is to do a least-squared fit to determine the interface velocity and thickness

>>> try:
def tanhResiduals(p, vy, x, t):
vV, d = p
return y - 0.5 * (1 - numerix.tanh((x - V = t — L / 2.) / (2+d)))
from scipy.optimize import leastsqg
x = mesh.cellCenters[0]
(V_fit, d_fit), msg leastsqg(tanhResiduals, [L/2., deltal,
args=(phase.globalValue, x.globalValue, elapsed))

except ImportError:

V_fit = d_fit = 0

print "The SciPy library is unavailable to fit the interface \
thickness and velocity"
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>>> print abs (1l - V_fit / velocity) < 4.le-2

True

>>> print abs(l - d_fit / delta) < 2e-2
True

>>> if _ name_ == ’_ _main__ ':

raw_input ("Dimensional, semi-implicit. Press <return> to proceed...")

phase
1 T T T

0.6 i

0.4 1

0.2 b

0 5e-4 le-3 1.5e-3 2e-3

12.2 examples.phase.binaryCoupled

Simultaneously solve a phase-field evolution and solute diffusion problem in one-dimension.

It is straightforward to extend a phase field model to include binary alloys. As in examples.phase.simple, we
will examine a 1D problem

>>> from fipy import =

>>> nx = 400
>>> dx = 5e-6 # cm
>>> L = nx * dx

>>> mesh = GridlD (dx=dx, nx=nx)

The Helmholtz free energy functional can be written as the integral [3] [5] [26]

f@&ﬂ:/

{11+ Z21vel + 2 veP} av
v 2 2
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over the volume V as a function of phase ¢

>>> phase = CellVariable (name="phase", mesh=mesh, hasOld=1)

composition C'

>>> C = CellVariable (name="composition", mesh=mesh, has0ld=1)

and temperature T °

>>> T = Variable (name="temperature")

Frequently, the gradient energy term in concentration is ignored and we can derive governing equations

9 ., Of
for phase and
oCc of
%y (MCV . C) (12.4)

for solute.

The free energy density f(¢,C,T) can be constructed in many different ways. One approach is to construct free
energy densities for each of the pure components, as functions of phase, e.g.

Wa

Fa(6,T) = p(&) FA(T) + (1 = p(@)) FA(T) + =~9(9)

where f4(T), f5(T), f3(T), and f5(T) are the free energy densities of the pure components. There are a variety of
choices for the interpolation function p(¢) and the barrier function g(¢),

such as those shown in examples.phase.simple

>>> def p(phi):
return phix*3 % (6 * phi*x*x2 - 15 % phi + 10)

>>> def g(phi):
return (phi * (1 - phi))**2

The desired thermodynamic model can then be applied to obtain f(¢, C,T'), such as for a regular solution,

f(9,C.T)=(1-C)fa(o,T)+ Cfp(,T)
+RT[(1-C)In(1 -C)+ClnC)+C(1 - C)[Qsp(d) + Q2 (1 — p(0))]
where

>>> R = 8.314 # J / (mol K)

is the gas constant and (25 and €2, are the regular solution interaction parameters for solid and liquid.

Another approach is useful when the free energy densities f©(C,T) and f*(C,T) of the alloy in the solid and liquid
phases are known. This might be the case when the two different phases have different thermodynamic models or
when one or both is obtained from a Calphad code. In this case, we can construct

F(6,C.T) =p(@)f°(C,T) + (1 = p(¢)) FX(C.T) + |(1 = C)—= + C—=| g().

! We will find that we need to “sweep” this non-linear problem (see e.g.  the composition-dependent diffusivity example in
examples.diffusion.meshlD), so we declare ¢ and C to retain an “old” value.
2 we are going to want to examine different temperatures in this example, so we declare T as a Variable
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When the thermodynamic models are the same in both phases, both approaches should yield the same result.

We choose the first approach and make the simplifying assumptions of an ideal solution and that

X1 =0

A
ﬁm—ﬂmzL“%@W

and likewise for component B.

>>> LA = 2350. # J / cm##3
>>> LB 1728. # J / cm##3
>>> TmA = 1728. # K
>>> TmB = 1358. # K

>>> enthalpyA = LA * (T - TmA) / TmA
>>> enthalpyB = LB * (T - TmB) / TmB

This relates the difference between the free energy densities of the pure solid and pure liquid phases to the latent heat
L 4 and the pure component melting point T}, such that

La(T T4
fato, 1) = EAL T gy Wa i)
M
With these assumptions
Of _(1_ )22 91
%_(1 ) 90 +08q§
_TA _ 7B
M M
and
of

&= o+ | - [0+ o mi - o)

= [/”'B(¢7 C? T) - NA(¢7 Ca T)] /Vm

where 114 and p p are the classical chemical potentials for the binary species. p’(¢) and ¢’ (¢) are the partial derivatives
of of p and g with respect to ¢

>>> def pPrime (phi):
return 30. * g(phi)

>>> def gPrime (phi) :
return 2. % phi » (1 - phi) % (1 - 2 % phi)

V. is the molar volume, which we take to be independent of concentration and phase

>>> Vm = 7.42 # cm#+3 / mol

On comparison with examples.phase.simple, we can see that the present form of the phase field equation is
identical to the one found earlier, with the source now composed of the concentration-weighted average of the source
for either pure component. We let the pure component barriers equal the previous value

>>> deltaA deltaB = 1.5 * dx
>>> sigmaA = 3.7e-5 # J / cmx#2
>>> sigmaB = 2.9e-5 # J / cmx#2
>>> betaA = 0.33 # cm / (K s)
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>>> betaB = 0.39 # cm / (K s)

>>> kappaA = 6 * sigmaA + deltaA # J / cm
>>> kappaB = 6 x sigmaB x deltaB # J / cm
>>> WA = 6 sigmaA / deltalA # J / cm#+3
>>> WB = 6 sigmaB / deltaB # J / cm##3

*

*

and define the averages

>>> W= (1 - C) » WA/ 2. +C » WB / 2.
>>> enthalpy = (1 - C) % enthalpyA + C x enthalpyB

We can now linearize the source exactly as before

>>> mPhi = —((1 - 2 * phase) « W + 30 x phase * (1 - phase) * enthalpy)
>>> dmPhidPhi = 2 « W - 30 % (1 - 2 % phase) % enthalpy

>>> S1 = dmPhidPhi * phase % (1 - phase) + mPhi » (1 - 2 x phase)

>>> S0 = mPhi * phase * (1 - phase) - S1 * phase

Using the same gradient energy coefficient and phase field mobility

>>> kappa = (1 - C) * kappaA + C * kappaB
>>> Mphi = TmA * betaA / (6 x* LA * deltad)

we define the phase field equation

>>> phaseEq = (TransientTerm(1l/Mphi, var=phase) == DiffusionTerm(coeff=kappa, var=phase)
+ SO0 + ImplicitSourceTerm(coeff=S1, var=phase))

When coding explicitly, it is typical to simply write a function to evaluate the chemical potentials 14 and 1 p and then
perform the finite differences necessary to calculate their gradient and divergence, e.g.,:

def deltaChemPot (phase, C, T):
return ((Vm » (enthalpyB * p(phase) + WA % g(phase)) + R » T x log(l - C)) -
(Vm * (enthalpyA * p(phase) + WA x g(phase)) + R » T % log(C)))

for j in range (faces):
flux[3j] = ((Mc[J+.5] + Mc[j—-.51) / 2) \
+ (deltaChemPot (phase[]j+.5], C[j+.5], T) \
)

- deltaChemPot (phase[j-.5], C[j-.5], T) / dx
for j in range(cells):
diffusion = (flux[j+.5] - flux[j-.5]) / dx
where we neglect the details of the outer boundaries (j = 0 and j = N) or exactly how to translate j+.5 or j—.5

into an array index, much less the complexities of higher dimensions. FiPy can handle all of these issues automatically,
so we could just write:

chemPotA = Vm * (enthalpyA * p(phase) + WA % g(phase)) + R » T » log(C)
chemPotB = Vm * (enthalpyB % p(phase) + WB % g(phase)) + R » T » log(1l-C)
flux = Mc * (chemPotB - chemPotA) .faceGrad

eqg = TransientTerm() == flux.divergence

Although the second syntax would essentially work as written, such an explicit implementation would be very slow.
In order to take advantage of FiPy‘s implicit solvers, it is necessary to reduce Eq. (12.4) to the canonical form of Eq.
(??), hence we must expand Eq. (12.2) as

of _[Ls(T-Tf) La(T-T8)
oc TS T4

Wp —Wa
2

(&) + L lnC - (1 - )] +

v 9(¢)
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In either bulk phase, Vp(¢) = Vg(¢$) = 0, so we can then reduce Eq. (12.4) to

% _v. (Mcv{i: InC —In(1 —C)]})

- McRT
C(1—C)Vn

v

and, by comparison with Fick’s second law

aC
& =V DVl

we can associate the mobility M¢ with the intrinsic diffusivity Do by Mo = DeC(1 — C)V,,/RT and write Eq.
(12.4) as

ac

& =V (Dcv0)
DeC(1—CW [[Lp (T —TE)  La(T—1T5)] Wy — Wa
+v: ( RT { i TJ@ - Tj\él | Vp() + fv.g(d)) .
=V (DcVO)
o. [ DcClL- OV, (Lp (T-Tf) La(T-T{)] Wo—Wa o\ o
+ RT _ TB T3 | p'(9) + — 5 Y (0) ¢ |-

The first termis clearly aDiffusionTermin C. The secondisaDiffusionTermin ¢ with a diffusion coefficent

DoC(1=C)Vy | |Lp (T -T57) La(T-T5)| , W —Wa ,
Dy(C,0) = - (@) + ———9'(9) ¢,
¢ RT { TE T 2
such that
oC
5 = V- (DeVC) + V- (D7)
or

>>> D1 = Variable (value=le-5) # cm*+2 / s
>>> Ds = Variable (value=1e-9) # cm#+2 / s
>>> Dc = (Ds — D1l) * phase.arithmeticFaceValue + D1

>>> Dphi = ((Dc * C.harmonicFaceValue * (1 - C.harmonicFaceValue) » Vm / (R = T))
* ((enthalpyB - enthalpyA) = pPrime (phase.arithmeticFaceValue)
+ 0.5 » (WB — WA) % gPrime (phase.arithmeticFaceValue)))

>>> diffusionEq = (TransientTerm(var=C)
== DiffusionTerm(coeff=Dc, var=C)

+ DiffusionTerm(coeff=Dphi, var=phase))

>>> eq = phaseEq & diffusionEqg

We initialize the phase field to a step function in the middle of the domain

>>> phase.setValue(1l.)
>>> phase.setValue (0., where=mesh.cellCenters[0] > L/2.)

and start with a uniform composition field C' = 1/2
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>>> C.setValue (0.5)

In equilibrium, p4(0,CL,T) = pa(1,Cs,T) and up(0,Cr,T) = up(l,Cs,T) and, for ideal solutions, we can
deduce the liquidus and solidus compositions as

e (1)

T3 RT
CL =
Lp(T-TE La(T-TA
o () oo (T
Lp (T —T§) Vi,
Cs=exp| ————% C
S p( Tﬁ RT L
>>> Cl = (1. - numerix.exp(-enthalpyA = Vm / (R = T))) \
/ (numerix.exp (-enthalpyB = Vm / (R * T)) — numerix.exp(-enthalpyA * Vm / (R % T)))

>>> Cs = numerix.exp(-enthalpyB = Vm / (R % T)) = Cl

The phase fraction is predicted by the lever rule

>>> Cavg = C.cellVolumeAverage
>>> fraction = (Cl - Cavg) / (Cl - Cs)

For the special case of fraction = Cavg = 0.5, a little bit of algebra reveals that the temperature that leaves
the phase fraction unchanged is given by

>>> T.setValue ((LA + LB) * TmA % TmB / (LA * TmB + LB * TmA))

In this simple, binary, ideal solution case, we can derive explicit expressions for the solidus and liquidus compositions.
In general, this may not be possible or practical. In that event, the root-finding facilities in SciPy can be used.

We’ll need a function to return the two conditions for equilibrium

La(T-T38
0=pa(1,Cs,T) — pa(0,Cp,T) = A(TAM)Vm + RTIn(1 — Cg) — RTIn(1 — Cp)
M
Ly (T-TE
0= ,LLB(l,Cs,T) — ,LLB(O,CL,T) = Mvm + RTInCg — RT'InCj,
M

>>> def equilibrium(C) :
return [numerix.array(enthalpyA * Vm
+ R » T » numerix.log(l — C[0])
- R » T * numerix.log(l — C[1]1)),
numerix.array (enthalpyB % Vm
+ R » T » numerix.log(C[0])
-~ R » T » numerix.log(C[1]))]

and we’ll have much better luck if we also supply the Jacobian

Owi-ps) Bwi-ph) 1 1
9Cs 90T, _pr| TCs T

O(ui—np) Owp—np) = -
aCs oCL s L

>>> def equilibriumJacobian (C) :
return R » T * numerix.array([[-1.

110 Chapter 12. Phase Field Examples



FiPy Manual, Release 3.1

>>> try:
from scipy.optimize import fsolve
CsRoot, ClRoot = fsolve (func=equilibrium, x0=[0.5, 0.5],
fprime=equilibriumJacobian)
except ImportError:
ClRoot = CsRoot = 0
print "The SciPy library is not available to calculate the solidus and \
liquidus concentrations"

>>> print Cl.allclose (ClRoot)

>>> print Cs.allclose (CsRoot)

We plot the result against the sharp interface solution

>>> sharp = CellVariable (name="sharp", mesh=mesh)
>>> x = mesh.cellCenters[0]

>>> sharp.setValue (Cs, where=x < L x fraction)
>>> sharp.setValue (Cl, where=x >= L % fraction)

>>> if _ name_ == '_ _main_ ’:
viewer = Viewer (vars=(phase, C, sharp),
datamin=0., datamax=1.)
viewer.plot ()

Because the phase field interface will not move, and because we’ve seen in earlier examples that the diffusion problem
is unconditionally stable, we need take only one very large timestep to reach equilibrium

>>> dt = 1.eb

Because the phase field equation is coupled to the composition through enthalpy and W and the diffusion equation
is coupled to the phase field through phaseTransformationVelocity, it is necessary sweep this non-linear
problem to convergence. We use the “residual” of the equations (a measure of how well they think they have solved
the given set of linear equations) as a test for how long to sweep. Because of the ConvectionTerm, the solution
matrix for diffusionEq is asymmetric and cannot be solved by the default LinearPCGSolver. Therefore, we
use a LinearLUSolver for this equation.

We now use the “sweep () ” method instead of “solve () because we require the residual.

>>> solver = LinearLUSolver (tolerance=1le-10)

>>> phase.updateOld()
>>> C.updateOld()

>>> res = 1.

>>> initialRes = None

>>> while res > le—-4:
res = eq.sweep (dt=dt, solver=solver)
if initialRes is None:
initialRes = res
res = res / initialRes

>>> if _ name_ == '_ _main_ ’:
viewer.plot ()
raw_input ("stationary phase field")
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We verify that the bulk phases have shifted to the predicted solidus and liquidus compositions

>>> X = mesh.faceCenters[0]

>>> print Cs.allclose(C.faceValue[X.value==0], atol=le-2)
True
>>> print Cl.allclose(C.faceValue[X.value==L], atol=le-2)
True

and that the phase fraction remains unchanged

>>> print fraction.allclose (phase.cellVolumeAverage, atol=2e-4)
1

while conserving mass overall

>>> print Cavg.allclose (0.5, atol=1e-8)
1

We now quench by ten degrees

>>> T.setValue(T() - 10.) # K

>>> sharp.setValue (Cs, where=x < L % fraction)
>>> sharp.setValue (Cl, where=x >= L » fraction)

Because this lower temperature will induce the phase interface to move (solidify), we will need to take much smaller
timesteps (the time scales of diffusion and of phase transformation compete with each other).

The CFL limit requires that no interface should advect more than one grid spacing in a timestep. We can get a rough
idea for the maximum timestep we can take by looking at the velocity of convection induced by phase transformation
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in Eq. (12.2) (even though there is no explicit convection in the coupled form used for this example, the principle
remains the same). If we assume that the phase changes from 1 to 0 in a single grid spacing, that the diffusivity is D/
at the interface, and that the term due to the difference in barrier heights is negligible:

. D
U¢:F¢v¢
DIV, |Lp(T=Ty;) La(T—-Ty)| 1
= RT T T Az
DIiV, T4 —TE 1
IR LG S S ¥ )
rr \Le LA TR Ry
~ 0.28 cm/s

To geta CFL = @,At/Az < 1, we need a time step of about 1077 s.

>>> dt = 1.e-5

>>> if _ name_ == '_ main_ ':
timesteps = 100
. else:
timesteps = 10

>>> for i1 in range (timesteps) :
phase.updateOld()
C.updateOld()

res = le+l0
while res > le-3:

res = eq.sweep (dt=dt, solver=solver)
if _ name_ == '_ main_ ’:

viewer.plot ()

>>> if _ name_ == '_ main_ ':
raw_input ("moving phase field")
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We see that the composition on either side of the interface approach the sharp-interface solidus and liquidus, but it will
take a great many more timesteps to reach equilibrium. If we waited sufficiently long, we could again verify the final
concentrations and phase fraction against the expected values.

12.3 examples.phase.quaternary

Solve a phase-field evolution and diffusion of four species in one-dimension.

The same procedure used to construct the two-component phase field diffusion problem in
examples.phase.binary can be used to build up a system of multiple components. Once again, we’ll
focus on 1D.

>>> from fipy import =

>>> nx = 400

>>> dx = 0.01

>>> L = nx % dx

>>> mesh = GridlD(dx = dx, nx = nx)

We consider a free energy density f(¢, Co,...,Cn,T) that is a function of phase ¢

>>> phase = CellVariable (mesh=mesh, name=’phase’, value=1., has0ld=1)

interstitial components Cy . .. Cy

>>> interstitials = [
CellVariable (mesh=mesh, name=’'C0’, has0ld=1)
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substitutional components Cpy41...Cn_1

>>> substitutionals = [
CellVariable (mesh=mesh, name=’'Cl’, hasOld=1),
CellVariable (mesh=mesh, name=’'C2’, hasOld=1),
1

a “solvent” C'y that is constrained by the concentrations of the other substitutional species, such that Cy = 1 —

N—-1
Zj:JVI Cj’
>>> solvent = 1
>>> for Cj in substitutionals:
.. solvent -= Cj
>>> solvent.name = ’'CN’

and temperature T’

>>> T = 1000
The free energy density of such a system can be written as
N .
f(¢7CO7"'7CN7 ZC |:/143 ¢7 +RT11’17J
Jj=0 P
where

>>> R = 8.314 # J / (mol K)

is the gas constant. As in the binary case,

K6, T) = PO (T) + (1 = p(6)) w3 (T) + 29(0)

is constructed with the free energies of the pure components in each phase, given the “tilting” function

>>> def p(phi):
return phix*3 % (6 * phi*x%x2 — 15 % phi + 10)

and the “double well” function

>>> def g(phi):
return (phi * (1 - phi))**2

We consider a very simplified model that has partial molar volumes Vo = -+ = Viy = 0 for the “interstitials” and
Va1 = -+ = Vi = 1 for the “substitutionals”. This approximation has been used in a number of models where

density effects are ignored, including the treatment of electrons in electrodeposition processes [28] [29]. Under these
constraints

of L oy

%~ ?3q85
Zq%%mwwﬂﬂﬂ
j=

0
of C;
Y o+ e
= 1y(6.C;,T)  forj=0...M
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and

of
ac;

Cj C
= N§(¢,T)+RT1npj} - {uj’v(qb,T)JrRTlnpN

where p355(T) = p$®(T) — p$*(T') and where 415 is the classical chemical potential of component j for the binary

species and p = 1 + ij\io C} is the total molar density.
>>> rho = 1.

>>> for Cj in interstitials:
rho += CJj

P’ (¢) and ¢’ (¢) are the partial derivatives of of p and g with respect to ¢

>>> def pPrime (phi):
return 30. * g(phi)

>>> def gPrime (phi):
return 2. » phi % (1 - phi) » (1 - 2 * phi)

We “cook” the standard potentials to give the desired solid and liquid concentrations, with a solid phase rich in
interstitials and the solvent and a liquid phase rich in the two substitutional species.

>>> interstitials[0].S

>>> interstitials[0].L =

>>> substitutionals[O0]

>>> substitutionals[0]

>>> substitutionals([1].

>>> substitutionals[1]

>>> solvent.S = 1.

>>> gsolvent.L = 1.

>>> for Cj in substitutionals:
solvent.S -= Cj.S
solvent.L -= Cj.L

0.
0

O O O O > W
=N W

>>> rhoS = rhoL = 1.

>>> for Cj in interstitials:
rhoS += Cj.S
rhol. += CJ.L

>>> for Cj in interstitials + substitutionals + [solvent]:
Cj.standardPotential = R * T * (numerix.log(Cj.L/rhol)
- numerix.log(Cj.S/rhoS))

>>> for Cj in interstitials:
Cj.diffusivity = 1.
Cj.barrier = 0.

>>> for Cj in substitutionals:
Cj.diffusivity = 1.

Cj.barrier = R = T

>>> solvent.barrier = R » T
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We create the phase equation

1 9¢

N
W.
s BT 3 D)+ 0
=0

with a semi-implicit source just as in examples.phase.simple and examples.phase.binary

>>> enthalpy = 0.

>>> barrier = 0.

>>> for Cj in interstitials + substitutionals + [solvent]:
enthalpy += Cj = Cj.standardPotential
barrier += Cj » Cj.barrier

>>> mPhi = —((1 - 2 » phase) * barrier + 30 * phase » (1 - phase) % enthalpy)
>>> dmPhidPhi = 2 % barrier - 30 x (1 - 2 * phase) = enthalpy

>>> S1 = dmPhidPhi * phase % (1 - phase) + mPhi » (1 - 2 x phase)

>>> S0 = mPhi * phase * (1 - phase) - S1 * phase

>>> phase.mobility = 1.
>>> phase.gradientEnergy = 25
>>> phase.equation = TransientTerm(coeff=1/phase.mobility) \
== DiffusionTerm(coeff=phase.gradientEnergy) \
+ S0 + ImplicitSourceTerm(coeff = S1)

We could construct the diffusion equations one-by-one, in the manner of examples.phase.binary, but it is
better to take advantage of the full scripting power of the Python language, where we can easily loop over components
or even make “factory” functions if we desire. For the interstitial diffusion equations, we arrange in canonical form as
before:

aC,;
—atf = D;V*C;
~—~— ——
transient diffusion
phase transformation counter diffusion
M
C; p W,
sy — G L [tenie) + B2Vt - Y va
o+ 22/[:0 Cp | BT [ 2 ; l
k#j i#]

convection

>>> for Cj in interstitials:
phaseTransformation = (rho.harmonicFaceValue / (R » T)) \
* (Cj.standardPotential = p(phase) .faceGrad
+ 0.5 % Cj.barrier * g(phase).faceGrad)

CkSum = CellVariable (mesh=mesh, value=0.)
for Ck in [Ck for Ck in interstitials if Ck is not Cj]:
CkSum += Ck

counterDiffusion = CkSum.faceGrad
convectionCoeff = counterDiffusion + phaseTransformation
convectionCoeff x= (Cj.diffusivity

/ (1. + CkSum.harmonicFaceValue))

12.3. examples.phase.quaternary 117



FiPy Manual, Release 3.1

Cj.equation = (TransientTerm()
== DiffusionTerm(coeff=Cj.diffusivity)
+ PowerLawConvectionTerm (coeff=convectionCoeff))

The canonical form of the substitutional diffusion equations is

aC;
J X727,
C A
N~ ——
transient diffusion
phase transformation counter diffusion
Cj Cn oSL oSL Wj — Wy —
+ DV ——§5T7 RT ( i T HN )Vp(¢)+ #VQ(@ + Z Ve
1 =2 k=nr+1Ck i=M+1
k#j i#]
convection
>>> for Cj in substitutionals:
phaseTransformation = (solvent.harmonicFaceValue / (R = T)) \
* ((Cj.standardPotential - solvent.standardPotential) +* p(phase).faceGrad
+ 0.5 % (Cj.barrier - solvent.barrier) * g(phase).faceGrad)

CkSum = CellVariable (mesh=mesh, value=0.)
for Ck in [Ck for Ck in substitutionals if Ck is not Cj]:
CkSum += Ck

counterDiffusion = CkSum.faceGrad

convectionCoeff = counterDiffusion + phaseTransformation
convectionCoeff x= (Cj.diffusivity
/ (1. — CkSum.harmonicFaceValue))

Cj.equation = (TransientTerm()
== DiffusionTerm(coeff=Cj.diffusivity)
+ PowerLawConvectionTerm (coeff=convectionCoeff))

We start with a sharp phase boundary

1 forz < L/2,

&= 0 forx>L/2,

>>> x = mesh.cellCenters[0]
>>> phase.setValue(l.)
>>> phase.setValue (0., where=x > L / 2)

and with uniform concentration fields, initially equal to the average of the solidus and liquidus concentrations

>>> for Cj in interstitials + substitutionals:
Cj.setValue((Cj.S + Cj.L) / 2.)

If we’re running interactively, we create a viewer
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>>> if  name == '_ _main__ ’:
viewer = Viewer (vars=([phase]
+ interstitials + substitutionals
+ [solvent]),
datamin=0, datamax=1)
viewer.plot ()

and again iterate to equilibrium

>>> solver = DefaultAsymmetricSolver (tolerance=1e-10)

>>> dt = 10000
>>> for i in range(5):
for field in [phase] + substitutionals + interstitials:
field.updateOld()
phase.equation.solve (var = phase, dt = dt)
for field in substitutionals + interstitials:
field.equation.solve(var = field,
dt = dt,
solver = solver)
if _ name_ == '_ main_ ’:
viewer.plot ()

1 T T T T
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0.8 b
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0.4
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We can confirm that the far-field phases have remained separated
>>> X = mesh.faceCenters[0]
>>> print numerix.allclose (phase.faceValue[X.value==0], 1.0, rtol = le-5, atol le-5)
True
>>> print numerix.allclose (phase.faceValue[X.value==L], 0.0, rtol = le-5, atol le-5)
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True

and that the concentration fields have appropriately segregated into their equilibrium values in each phase

>>> equilibrium = True

>>> for Cj in interstitials + substitutionals:
equilibrium &= numerix.allclose(Cj.faceValue[X.value==0], Cj.S, rtol = 3e-3, atol = 3e-3).va.
equilibrium &= numerix.allclose(Cj.faceValue[X.value==L], Cj.L, rtol = 3e-3, atol = 3e-3).va:

>>> print equilibrium
True

12.4 examples.phase.anisotropy

Solve a dendritic solidification problem.

To convert a liquid material to a solid, it must be cooled to a temperature below its melting point (known as “under-
cooling” or “supercooling”). The rate of solidification is often assumed (and experimentally found) to be proportional
to the undercooling. Under the right circumstances, the solidification front can become unstable, leading to dendritic
patterns. Warren, Kobayashi, Lobkovsky and Carter [10] have described a phase field model (“Allen-Cahn”, “non-
conserved Ginsberg-Landau”, or “model A” of Hohenberg & Halperin) of such a system, including the effects of
discrete crystalline orientations (anisotropy).

We start with a regular 2D Cartesian mesh

>>> from fipy import =«
>>> dx = dy = 0.025
>>> if _ name_ == '_ _main_
nx = ny = 500
else:
Ce nx = ny = 20
>>> mesh = Grid2D (dx=dx, dy=dy, nx=nx, ny=ny)

and we’ll take fixed timesteps

>>> dt = S5e—4

We consider the simultaneous evolution of a “phase field” variable ¢ (taken to be O in the liquid phase and 1 in the
solid)

>>> phase = CellVariable (name=r’$\phi$’, mesh=mesh, hasOld=True)

and a dimensionless undercooling AT (AT = 0 at the melting point)

>>> dT = CellVariable (name=r’$\Delta TS$’, mesh=mesh, hasOld=True)

The hasO1d flag causes the storage of the value of variable from the previous timestep. This is necessary for solving
equations with non-linear coefficients or for coupling between PDEs.

The governing equation for the temperature field is the heat flux equation, with a source due to the latent heat of
solidification
OAT 0¢

== = DyVAAT + =2
ot vV o

>>> DT = 2.25
>>> heatEqg = (TransientTerm()
== DiffusionTerm(DT)
+ (phase - phase.old) / dt)
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The governing equation for the phase field is

9¢

72 = VD6 + 6(1 — gm(s, AT)

where
1 K1
m(p, AT) = ¢ — 5 o arctan (ko AT)
™

represents a source of anisotropy. The coefficient D is an anisotropic diffusion tensor in two dimensions

1+c¢f —c28
D=c?(1+c¢ oy
( 8) c% 1+¢p

where 3 = %, ® = tan (§1), 1) = 0 + arctan gi?gi, 6 is the orientation, and N is the symmetry.

>>> alpha = 0.015

>>> ¢ = 0.02

>>> N = 6.

>>> theta = numerix.pi / 8.

>>> psi = theta + numerix.arctan2 (phase.faceGrad[l],
phase.faceGrad[0])

>>> Phi = numerix.tan(N * psi / 2)

>>> PhiSq = Phix=*2

>>> beta = (1. - PhiSqg) / (1. + PhiSq)

>>> DbetaDpsi = -N x 2 % Phi / (1 + PhiSq)

>>> Ddia = (l1.+ c * beta)

>>> Doff = c * DbetaDpsi

>>> I0 = Variable(value=((1,0), (0,1)))

>>> I1 = Variable (value=((0,-1), (1,0)))

>>> D = alpha**2 % (l.+ ¢ % beta) » (Ddia » I0 + Doff » Il)

With these expressions defined, we can construct the phase field equation as

>>> tau = 3e-4
>>> kappal = 0.9
>>> kappa2 = 20.
>>> phaseEqg = (TransientTerm(tau)
== DiffusionTerm (D)
+ ImplicitSourceTerm( (phase — 0.5 - kappal / numerix.pi * numerix.arctan (kappa2 * dT).

* (1 - phase)))

We seed a circular solidified region in the center

>>> radius = dx * 5.

>>> C = (nx » dx / 2, ny ~ dy / 2)

>>> x, y = mesh.cellCenters

>>> phase.setValue(l., where=((x — C[0])**2 + (y — C[1])*%2) < radius*x2)

and quench the entire simulation domain below the melting point
>>> dT.setValue (-0.5)
In a real solidification process, dendritic branching is induced by small thermal fluctuations along an otherwise smooth

surface, but the granularity of the Mesh is enough “noise” in this case, so we don’t need to explicitly introduce
randomness, the way we did in the Cahn-Hilliard problem.

FiPy’s viewers are utilitarian, striving to let the user see something, regardless of their operating system or installed
packages, so you won’t be able to simultaneously view two fields “out of the box”, but, because all of Python is
accessible and FiPy is object oriented, it is not hard to adapt one of the existing viewers to create a specialized display:
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>>> if _ name_ == "_ _main__ ":
try:
import pylab
class DendriteViewer (Matplotlib2DGridViewer) :
def _ _init__ (self, phase, dT, title=None, limits={}, **kwlimits):
self.phase = phase
self.contour = None
Matplotlib2DGridViewer.__init__ (self, vars=(dT,), title=title,
cmap=pylab.cm.hot,
limits=1limits, *+kwlimits)

def _plot (self):
Matplotlib2DGridViewer._plot (self)

if self.contour is not None:
for ¢ in self.contour.collections:
c.remove ()

mesh = self.phase.mesh

shape = mesh.shape

x, y = mesh.cellCenters

z = self.phase.value

X, y, z = [a.reshape(shape, order="FORTRAN") for a in (x, vy, z)]

self.contour = pylab.contour(x, y, z, (0.5,))

viewer = DendriteViewer (phase=phase, dT=dT,
title=r"%s & $s" % (phase.name, dT.name),

datamin=-0.1, datamax=0.05)
except ImportError:
viewer = MultiViewer (viewers=(Viewer (vars=phase),
Viewer (vars=dT,
datamin=-0.5,
datamax=0.5)))

and iterate the solution in time, plotting as we go,

>>> if _ name_ == '_ _main_ ’:
steps = 10000
else:
steps = 10

>>> for i1 in range (steps):
phase.updateOld()
dT.updateOld ()
phaseEqg.solve (phase, dt=dt)
heatEqg.solve (dT, dt=dt)
if _ name_ == "__main_ " and (i % 10 == 0):
viewer.plot ()
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The non-uniform temperature results from the release of latent heat at the solidifying interface. The dendrite arms
grow fastest where the temperature gradient is steepest.

We note that this FiPy simulation is written in about 50 lines of code (excluding the custom viewer), compared with
over 800 lines of (fairly lucid) FORTRAN code used for the figures in [10].

12.5 examples.phase.impingement.mesh40x1

Solve for the impingement of two grains in one dimension.

In this example we solve a coupled phase and orientation equation on a one dimensional grid. This is another aspect
of the model of Warren, Kobayashi, Lobkovsky and Carter [10]

>>> from fipy import =«

>>> nx = 40
>>> Lx = 2.5 « nx / 100.
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>>> dx = Lx / nx
>>> mesh = GridlD (dx=dx, nx=nx)

This problem simulates the wet boundary that forms between grains of different orientations. The phase equation is
given by

99

Togp = V70 + 01— 8)ma(9,T) — 250|V6| — | V6]

where
m($.T) = 6~ 3 ~To(1 - 9)

and the orientation equation is given by

200 a2 5 2
PG = V- |6 (g4 ) vl

where
P(w) = 1= exp (~Bw) + £ exp (~pu)
The initial conditions for this problem are set such that ¢ = 1 for0 < z < L, and

)1 for0 <z < Ly/2,
0 forL,/2 <z <L,

Here the phase and orientation equations are solved with an explicit and implicit technique respectively.

The parameters for these equations are

>>> timeStepDuration = 0.02
>>> phaseTransientCoeff = 0.1
>>> thetaSmallValue = le-6
>>> beta = leb5

>>> mu = le3

>>> thetaTransientCoeff = 0.01
>>> gamma= le3

>>> epsilon = 0.008

>>> s = 0.01

>>> alpha = 0.015

The system is held isothermal at

>>> temperature = 1.

and is initially solid everywhere

>>> phase = CellVariable (
name='phase field’,
mesh=mesh,
value=1.

)

Because theta is an S'-valued variable (i.e. it maps to the circle) and thus intrinsically has 27-peridocity, we must
use ModularVariable instead of a CellVariable. A ModularVariable confines thetato — 7 <0 <7
by adding or subtracting 27 where necessary and by defining a new subtraction operator between two angles.
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>>> theta = ModularVariable (
name=’"theta’,
mesh=mesh,
value=1.,
hasOld=1
)

The left and right halves of the domain are given different orientations.

>>> theta.setValue (0., where=mesh.cellCenters[0] > Lx / 2.)

The phase equation is built in the following way.

>>> mPhiVar = phase - 0.5 + temperature *» phase x (1 - phase)

The source term is linearized in the manner demonstrated in examples.phase.simple (Kobayashi, semi-
implicit).
>>> thetaMag = theta.old.grad.mag

>>> implicitSource = mPhiVar * (phase - (mPhivar < 0))
>>> implicitSource += (2 % s + epsilonxx2 * thetaMag) = thetaMag

The phase equation is constructed.

>>> phaseEq = TransientTerm(phaseTransientCoeff) \
== ExplicitDiffusionTerm(alpha*+2) \
— ImplicitSourceTerm(implicitSource) \
+ (mPhivVar > 0) = mPhiVar = phase

The theta equation is built in the following way. The details for this equation are fairly involved, see J.A. Warren et
al.. The main detail is that a source must be added to correct for the discretization of theta on the circle.

>>> phaseMod = phase + ( phase < thetaSmallValue ) x thetaSmallValue
>>> phaseModSqg = phaseMod x phaseMod

>>> expo = epsilon x beta % theta.grad.mag
>>> expo = (expo < 100.) % (expo — 100.) + 100.
>>> pFunc = 1. + numerix.exp(-expo) * (mu / epsilon - 1.)

>>> phaseFace = phase.arithmeticFaceValue
>>> phaseSg = phaseFace * phaseFace
>>> gradMag = theta.faceGrad.mag

>>> eps = 1. / gamma / 10.
>>> gradMag += (gradMag < eps) * eps
>>> IGamma = (gradMag > 1. / gamma) = (1 / gradMag - gamma) + gamma

>>> diffusionCoeff = phaseSqg * (s * IGamma + epsilon*=*2)

The source term requires the evaluation of the face gradient without the modular operator.
thetagetFaceGradNoMod () evelautes the gradient without modular arithmetic.

>>> thetaGradDiff = theta.faceGrad - theta.faceGradNoMod
>>> sourceCoeff = (diffusionCoeff » thetaGradDiff) .divergence

Finally the theta equation can be constructed.

>>> thetaEq = TransientTerm(thetaTransientCoeff * phaseModSq * pFunc) == \
DiffusionTerm(diffusionCoeff) \
+ sourceCoeff

If the example is run interactively, we create viewers for the phase and orientation variables.
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>>> if  name == '_ _main__ ’:
phaseViewer = Viewer (vars=phase, datamin=0., datamax=1.)
thetaProductViewer = Viewer (vars=theta,
datamin=-pi, datamax=pi)
phaseViewer.plot ()
thetaProductViewer.plot ()

we iterate the solution in time, plotting as we go if running interactively,

>>> steps = 10
>>> for 1 in range(steps):
theta.updateOld ()
thetaEqg.solve (theta, dt = timeStepDuration)
phaseEqg.solve (phase, dt = timeStepDuration)
if _ name_ == '_ _main__ ’:
phaseViewer.plot ()
thetaProductViewer.plot ()

The solution is compared with test data. The test data was created with steps = 10 with a FORTRAN code written
by Ryo Kobayashi for phase field modeling. The following code opens the file mesh40x1 . gz extracts the data and

compares it with the theta variable.

>>> import os

>>> testData = numerix.loadtxt (os.path.splitext(__file_ ) [0] + 7 .gz’)
>>> testData = CellVariable (mesh=mesh, value=testData)

>>> print theta.allclose(testData)

1

12.6 examples.phase.impingement.mesh20x20

Solve for the impingement of four grains in two dimensions.

In the following examples, we solve the same set of equations as
examples.phase.impingement .mesh40x1 with different initial conditions and a 2D mesh:

>>> from fipy.tools.parser import parse

>>> numberOfElements = parse (’ ——numberOfElements’, action = ’'store’,
.. type = "int’, default = 400)
>>> numberOfSteps = parse (/' ——numberOfSteps’, action = ’store’,
type = ’int’, default = 10)

>>> from fipy import =

>>> steps = numberOfSteps

>>> N = int (numerix.sqgrt (numberOfElements))
>>> L = 2.5 « N / 100.

>>> dL =L / N

>>> mesh = Grid2D (dx=dL, dy=dL, nx=N, ny=N)

The initial conditions are given by ¢ = 1 and

%’r for 2% —y? < L/2,
o =2z for (x — L)? —y? < L/2,
=% 4+0.3 fora?— (y—L)? < L/2,
Z for (x — L)?> — (y — L)?> < L/2.

in
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This defines four solid regions with different orientations. Solidification occurs and then boundary wetting occurs
where the orientation varies.

The parameters for this example are

>>> timeStepDuration = 0.02
>>> phaseTransientCoeff = 0.1
>>> thetaSmallValue = le-6
>>> beta leb

>>> mu = le3

>>> thetaTransientCoeff = 0.01
>>> gamma= le3

>>> epsilon = 0.008

>>> s = 0.01

>>> alpha = 0.015

The system is held isothermal at

>>> temperature = 10.

and is initialized to liquid everywhere

>>> phase = CellVariable (name='phase field’, mesh=mesh)

The orientation is initialized to a uniform value to denote the randomly oriented liquid phase

>>> theta = ModularVariable (
name=’"theta’,
mesh=mesh,
value=-numerix.pi + 0.0001,
hasOld=1
)

Four different solid circular domains are created at each corner of the domain with appropriate orientations

>>> x, y = mesh.cellCenters
>>> for a, b, thetaValue in (

0., 0., 2. » numerix.pi / 3.),

L, 0., -2. % numerix.pi / 3.),

0., L, =2. % numerix.pi / 3. + 0.3),
(L, L, 2. * numerix.pi / 3.)):
segment = (x — a)**2 + (y — b)*+x2 < (L / 2.)*%2
phase.setValue (1., where=segment)

theta.setValue (thetavValue, where=segment)

The phase equation is built in the following way. The source term is linearized in the manner demonstrated in
examples.phase.simple (Kobayashi, semi-implicit). Here we use a function to build the equation, so that it
can be reused later.

>>> def buildPhaseEquation (phase, theta):

mPhiVar = phase - 0.5 + temperature % phase x (1 - phase)
thetaMag = theta.old.grad.mag
implicitSource = mPhiVar x (phase - (mPhivar < 0))

implicitSource += (2 % s + epsilon*%2 * thetaMag) = thetaMag

return TransientTerm (phaseTransientCoeff) == \
ExplicitDiffusionTerm(alphax+2) \
— ImplicitSourceTerm(implicitSource) \
+ (mPhivar > 0) = mPhiVar x phase
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>>> phaseEqg = buildPhaseEquation (phase, theta)

The theta equation is built in the following way. The details for this equation are fairly involved, see J.A. Warren et
al.. The main detail is that a source must be added to correct for the discretization of theta on the circle. The source
term requires the evaluation of the face gradient without the modular operators.

>>> def buildThetaEquation (phase, theta):

phaseMod = phase + ( phase < thetaSmallValue ) x thetaSmallValue
phaseModSqg = phaseMod x phaseMod

expo = epsilon % beta * theta.grad.mag
expo = (expo < 100.) % (expo — 100.) + 100.
pFunc = 1. + numerix.exp(-expo) * (mu / epsilon - 1.)

phaseFace = phase.arithmeticFaceValue

phaseSqg = phaseFace x phaseFace

gradMag = theta.faceGrad.mag

eps = 1. / gamma / 10.

gradMag += (gradMag < eps) * eps

IGamma = (gradMag > 1. / gamma) % (1 / gradMag - gamma) + gamma
diffusionCoeff = phaseSq » (s * IGamma + epsilon*=*2)

thetaGradDiff = theta.faceGrad - theta.faceGradNoMod
sourceCoeff = (diffusionCoeff » thetaGradDiff) .divergence

return TransientTerm(thetaTransientCoeff * phaseModSqg * pFunc) == \
DiffusionTerm(diffusionCoeff) \
+ sourceCoeff

>>> thetaEq = buildThetaEquation (phase, theta)

If the example is run interactively, we create viewers for the phase and orientation variables. Rather than viewing the
raw orientation, which is not meaningful in the liquid phase, we weight the orientation by the phase

>>> if _ name_ == '_ main_ ':
phaseViewer = Viewer (vars=phase, datamin=0., datamax=1.)
thetaProd = —-numerix.pi + phase » (theta + numerix.pi)

thetaProductViewer = Viewer (vars=thetaProd,

datamin=-numerix.pi, datamax=numerix.pi)
phaseViewer.plot ()
thetaProductViewer.plot ()

The solution will be tested against data that was created with steps = 10 with a FORTRAN code written by
Ryo Kobayashi for phase field modeling. The following code opens the file mesh20x20 . gz extracts the data and
compares it with the theta variable.

>>> import os
>>> testData = numerix.loadtxt (os.path.splitext(__file_ ) [0] + 7.gz’).flat

We step the solution in time, plotting as we go if running interactively,

>>> for i1 in range (steps):
theta.updateOld ()
thetaEqg.solve (theta, dt=timeStepDuration, solver=GeneralSolver (iterations=2000, tolerance=le-
phaseEqg.solve (phase, dt=timeStepDuration, solver=GeneralSolver (iterations=2000, tolerance=le-

’ r .

if _ name__ = __main__
phaseViewer.plot ()
thetaProductViewer.plot ()
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The solution is compared against Ryo Kobayashi’s test data

>>> print theta.allclose(testData, rtol=le-7, atol=le-7)
1

The following code shows how to restart a simulation from some saved data. First, reset the variables to their original
values.

>>> phase.setValue (0)

>>> theta.setValue (—numerix.pi + 0.0001)
>>> x, y = mesh.cellCenters
>>> for a, b, thetavalue in ((0., 0., 2. * numerix.pi / 3.),

L, 0., -2. * numerix.pi / 3.),

0., L, =2. % numerix.pi / 3. + 0.3),
(L, L, 2. * numerix.pi / 3.)):
segment = (x — a)**2 + (y — b)*+2 < (L / 2.)*%2
phase.setValue(l., where=segment)

theta.setValue (thetavValue, where=segment)

Step through half the time steps.

>>> for i in range (steps // 2):
theta.updateOld()
thetaEqg.solve (theta, dt=timeStepDuration, solver=GeneralSolver (iterations=2000, tolerance=le:
phaseEqg.solve (phase, dt=timeStepDuration, solver=GeneralSolver (iterations=2000, tolerance=le-

We confirm that the solution has not yet converged to that given by Ryo Kobayashi’s FORTRAN code:

>>> print theta.allclose(testData)
0

We save the variables to disk.

>>> (f, filename) = dump.write ({’phase’ : phase, 'theta’ : theta}, extension = ".gz’)

and then recall them to test the data pickling mechanism

>>> data = dump.read(filename, £f)

>>> newPhase = data[’phase’]

>>> newTheta = datal[’theta’]

>>> newThetaEq = buildThetaEquation (newPhase, newTheta)
>>> newPhaseEqg = buildPhaseEquation (newPhase, newTheta)

and finish the iterations,

>>> for i in range (steps // 2):
newTheta.updateOld()
newThetaEqg.solve (newTheta, dt=timeStepDuration, solver=GeneralSolver (iterations=2000, tolera
newPhaseEq.solve (newPhase, dt=timeStepDuration, solver=GeneralSolver (iterations=2000, tolera

The solution is compared against Ryo Kobayashi’s test data

>>> print newTheta.allclose (testData, rtol=le-7)
1

12.7 examples.phase.polyxtal

Solve the dendritic growth of nuclei and subsequent grain impingement.
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To convert a liquid material to a solid, it must be cooled to a temperature below its melting point (known as “under-
cooling” or “supercooling”). The rate of solidification is often assumed (and experimentally found) to be proportional
to the undercooling. Under the right circumstances, the solidification front can become unstable, leading to dendritic
patterns. Warren, Kobayashi, Lobkovsky and Carter [10] have described a phase field model (“Allen-Cahn”, “non-
conserved Ginsberg-Landau”, or “model A” of Hohenberg & Halperin) of such a system, including the effects of
discrete crystalline orientations (anisotropy).

We start with a regular 2D Cartesian mesh

>>> from fipy import =«
>>> dx = dy = 0.025
>>> if _ name_ == "_ main_ ":
nx = ny = 200
else:
.. nx = ny = 200
>>> mesh = Grid2D (dx=dx, dy=dy, nx=nx, ny=ny)

and we’ll take fixed timesteps
>>> dt = 5e-4

We consider the simultaneous evolution of a “phase field” variable ¢ (taken to be O in the liquid phase and 1 in the
solid)

>>> phase = CellVariable (name=r’$\phi$’, mesh=mesh, hasOld=True)

a dimensionless undercooling AT (AT = 0 at the melting point)

>>> dT = CellVariable (name=r’S$\Delta TS$S’, mesh=mesh, hasOld=True)

and an orientation —m < 6 <7

>>> theta = ModularVariable (name=r’S$\theta$’, mesh=mesh, has0ld=True)
>>> theta.value = —numerix.pi + 0.0001

The has01d flag causes the storage of the value of variable from the previous timestep. This is necessary for solving
equations with non-linear coefficients or for coupling between PDE:s.

The governing equation for the temperature field is the heat flux equation, with a source due to the latent heat of
solidification

OAT

o
_— 2 —_— —
o, = DrVAT + =+ e(Ty — 1)

>>> DT = 2.25
>>> g = Variable(0.)
>> T_0 = -0.1
>>> heatEq = (TransientTerm()
== DiffusionTerm(DT)
+ (phase - phase.old) / dt
+ g *x T_0 - ImplicitSourceTerm(q))

The governing equation for the phase field is

9¢

Togp = ¥ DVé + ¢(1 — ¢)m(6, AT) — 25| V6| — *4|VO|*

where

1
m(o, AT) = ¢ — 3 % arctan (ko AT)
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represents a source of anisotropy. The coefficient D is an anisotropic diffusion tensor in two dimensions

1+c¢8 —c28
D=c?(1+c¢ 9y
( A) c% 1+¢p

where = };—gﬁ, ® = tan (§1), 1) = 0 + arctan gi;gg, 6 is the orientation, and N is the symmetry.

>>> alpha = 0.015

>>> ¢ = 0.02

>>> N = 4.

>>> psi = theta.arithmeticFaceValue + numerix.arctan2 (phase.faceGradl[l],
.. phase.faceGrad[0])

>>> Phi = numerix.tan(N * psi / 2)

>>> PhiSqg = Phix=*2

>>> beta = (1. - PhiSqg) / (1. + PhiSq)

>>> DbetaDpsi = -N x 2 % Phi / (1 + PhiSq)

>>> Ddia = (l1.+ c * beta)

>>> Doff = c % DbetaDpsi

>>> I0 = Variable(value=((1,0), (0,1)))

>>> I1 = Variable (value=((0,-1), (1,0)))

>>> D = alphax*2 % Ddia = (Ddia * IO + Doff x Il)

With these expressions defined, we can construct the phase field equation as

>>> tau_phase = 3e-4
>>> kappal = 0.9
>>> kappa2 = 20.
>>> epsilon = 0.008
>>> s = 0.01
>>> thetaMag = theta.grad.mag
>>> phaseEq = (TransientTerm(tau_phase)
== DiffusionTerm(D)
+ ImplicitSourceTerm((phase - 0.5 - kappal / numerix.pi * numerix.arctan (kappa2 = dT);

* (1 — phase)
- (2 x s + epsilon*%x2 * thetaMag) = thetaMag))

The governing equation for orientation is given by

200 a2 S 2
P(e|VO|)To 5= \Y [(b <|V9 +e€ )V@]

where

P(w) =1 —exp (—pw) + %exp (—Bw)
The theta equation is built in the following way. The details for this equation are fairly involved, see J.A. Warren et
al.. The main detail is that a source must be added to correct for the discretization of theta on the circle.

>>> tau_theta = 3e-3

>>> mu = le3

>>> gamma = le3

>>> thetaSmallValue = le-6

>>> phaseMod = phase + ( phase < thetaSmallValue ) * thetaSmallValue
>>> beta_theta = 1leb

>>> expo = epsilon * beta_theta *» theta.grad.mag
>>> expo = (expo < 100.) = (expo — 100.) + 100.
>>> Pfunc = 1. + numerix.exp(-expo) * (mu / epsilon - 1.)
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>>> gradMagTheta = theta.faceGrad.mag

>>> eps = 1. / gamma / 10.
>>> gradMagTheta += (gradMagTheta < eps) * eps
>>> IGamma = (gradMagTheta > 1. / gamma) * (1 / gradMagTheta - gamma) + gamma

>>> v_theta = phase.arithmeticFaceValue x (s * IGamma + epsilonxx2)
>>> D_theta = phase.arithmeticFaceValuex*2 * (s x* IGamma + epsilon=*x2)

The source term requires the evaluation of the face gradient without the modular
thetagetFaceGradNoMod () evaluates the gradient without modular arithmetic.

>>> thetaEg = (TransientTerm(tau_theta » phaseModx+2 * Pfunc)
== DiffusionTerm(D_theta)
+ (D_theta * (theta.faceGrad - theta.faceGradNoMod)) .divergence)

We seed a circular solidified region in the center

>>> x, y = mesh.cellCenters

>>> numSeeds = 10

>>> numerix.random.seed (12345)

>>> for Cx, Cy, orientation in numerix.random.random([numSeeds, 3]):

radius = dx * 5.

seed = ((x — Cx » nx * dx)**2 + (y — Cy % ny * dy)+**2) < radiusx*2
phase[seed] = 1.

theta[seed] = numerix.pi * (2 % orientation - 1)

and quench the entire simulation domain below the melting point

>>> dT.setValue (-0.5)

operator.

In a real solidification process, dendritic branching is induced by small thermal fluctuations along an otherwise smooth
surface, but the granularity of the Mesh is enough “noise” in this case, so we don’t need to explicitly introduce

randomness, the way we did in the Cahn-Hilliard problem.

FiPy’s viewers are utilitarian, striving to let the user see something, regardless of their operating system or installed
packages, so you the default color scheme of grain orientation won’t be very informative “out of the box”. Because

all of Python is accessible and FiPy is object oriented, it is not hard to adapt one of the existing viewers
specialized display:

>>> if _ name_ == "_ _main__ ":
try:
class OrientationViewer (Matplotlib2DGridViewer) :

to create a

def _ init__ (self, phase, orientation, title=None, limits={}, »+kwlimits):

self.phase = phase
Matplotlib2DGridViewer.__init__ (self, vars=(orientation,),

title=title,

limits=1limits, colorbar=None, *x*kwlimits)

# make room for non—-existent colorbar

# stolen from matplotlib.colorbar.make axes

# https://github.com/matplotlib/matplotlib/blob

# /eclcd2567521cl05a451cel5e06del0715£8b54d/11ib
# /matplotlib/colorbar.py#L838

fraction = 0.15

pb = self.axes.get_position(original=True) .frozen()
pad = 0.05
x1 = 1.0-fraction

pbl, pbx, pbcb = pb.splitx(xl-pad, x1)
panchor = (1.0, 0.5)
self.axes.set_position (pbl)
self.axes.set_anchor (panchor)
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# make the gnomon

fig = self.axes.get_figure()

self.gnomon = fig.add_axes([0.85, 0.425, 0.15, 0.15], polar=True)

self.gnomon.set_thetagrids([180, 270, 0, 907,
[r"S$\pm\pis", r"S-\frac{\pi}{2}$", "S0s$", r"S+\frac{\]
frac=1.3)

self.gnomon.set_theta_zero_location ("N")

self.gnomon.set_theta_direction(-1)

self.gnomon.set_rgrids([1.], [""])

N = 100

theta = numerix.arange (-numerix.pi, numerix.pi, 2 * numerix.pi / N)

radii = numerix.ones ((N,))

bars = self.gnomon.bar (theta, radii, width=2 * numerix.pi / N, bottom=0.0)

colors = self._orientation_and_phase_to_rgb (orientation=numerix.array ([thetal), ;i
for ¢, t, bar in zip(colors[0], theta, bars):

bar.set_facecolor(c)
bar.set_edgecolor (c)

def _reshape(self, wvar):
’’’return values of var in an 2D array’’’
return numerix.reshape (numerix.array (var),
var.mesh.shape[::-1]) [::-1]

@staticmethod
def _orientation_and_phase_to_rgb(orientation, phase):

from matplotlib import colors

hsv = numerix.empty (orientation.shape + (3,))

hsv[..., 0] = (orientation / numerix.pi + 1) / 2.
hsv[..., 1] = 1.
hsv[..., 2] = phase

return colors.hsv_to_rgb (hsv)

@property
def _data(self):
7’ ’convert phase and orientation to rgb image array

orientation (-pi, pi) -> hue (0, 1)
phase (0, 1) -> value (0, 1)

rr s

orientation = self._reshape(self.vars[0])
phase = self._reshape (self.phase)

return self._orientation_and_phase_to_rgb(orientation, phase)

def _plot(self):
self.image.set_data(self._data)

from matplotlib import pyplot
pyplot.ion()

w, h = pyplot.figaspect (1l.)

fig = pyplot.figure(figsize=(2+w, h))
timer = fig.text (0.1, 0.9, "t = &.371"

oe

0, fontsize=18)

viewer = MultiViewer (viewers= (MatplotlibViewer (vars=dT,
cmap=pyplot.cm.hot,
datamin=-0.5,

12.7. examples.phase.polyxtal 133



FiPy Manual, Release 3.1

datamax=0.5,
axes=fig.add_subplot (121)),
OrientationViewer (phase=phase,
orientation=theta,
title=theta.name,
axes=fig.add_subplot (122))))
except ImportError:
viewer = MultiViewer (viewers= (Viewer (vars=dT,
datamin=-0.5,
datamax=0.5),
Viewer (vars=phase,
datamin=0.,
datamax=1.),
Viewer (vars=theta,
datamin=-numerix.pi,
datamax=numerix.pi)))
viewer.plot ()

and iterate the solution in time, plotting as we go,

>>> if _ name_ == "_ main_ ":
total_time = 2.
else:
. total_time = dt * 10
>>> elapsed = 0.
>>> save_interval = 0.002
>>> save_at = save_interval

>>> while elapsed < total_time:

if elapsed > 0.3:
g.value = 100

phase.updateOld()

dT .updateOld ()

theta.updateOld ()

thetaEqg.solve (theta, dt=dt)

phaseEqg.solve (phase, dt=dt)

heatEqg.solve (dT, dt=dt)

elapsed += dt

if _ name__ == "_main__" and elapsed >= save_at:
timer.set_text ("t = " % elapsed)
viewer.plot ()
save_at += save_interval

134 Chapter 12. Phase Field Examples



FiPy Manual, Release 3.1

t=0.100 0.5

R AT
Bl
0.3
' 0.2
0.1
3
0o 5
01
1 —0.2
03
05 1 2 3 1 5

.

ra

—0.4

The non-uniform temperature results from the release of latent heat at the solidifying interface. The dendrite arms
grow fastest where the temperature gradient is steepest.

12.8 examples.phase.polyxtalCoupled

Simultaneously solve the dendritic growth of nuclei and subsequent grain impingement.

To convert a liquid material to a solid, it must be cooled to a temperature below its melting point (known as “under-
cooling” or “supercooling”). The rate of solidification is often assumed (and experimentally found) to be proportional
to the undercooling. Under the right circumstances, the solidification front can become unstable, leading to dendritic
patterns. Warren, Kobayashi, Lobkovsky and Carter [10] have described a phase field model (“Allen-Cahn”, “non-
conserved Ginsberg-Landau”, or “model A” of Hohenberg & Halperin) of such a system, including the effects of
discrete crystalline orientations (anisotropy).

We start with a regular 2D Cartesian mesh

>>> from fipy import =
>>> dx = dy = 0.025
>>> if _ name_ == "_ main_ ":
nx = ny = 200
else:
.. nx = ny = 200
>>> mesh = Grid2D (dx=dx, dy=dy, nx=nx, ny=ny)
and we’ll take fixed timesteps

>>> dt = 5e-4

We consider the simultaneous evolution of a “phase field” variable ¢ (taken to be O in the liquid phase and 1 in the
solid)

>>> phase = CellVariable (name=r’$\phi$’, mesh=mesh, hasOld=True)

a dimensionless undercooling AT (AT = 0 at the melting point)

>>> dT = CellVariable (name=r’$\Delta TS$’, mesh=mesh, hasO0ld=True)

and an orientation —7 < 0 < 7
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>>> theta = ModularVariable (name=r’$\theta$’, mesh=mesh, hasOld=True)
>>> theta.value = —-numerix.pi + 0.0001

The hasO1d flag causes the storage of the value of variable from the previous timestep. This is necessary for solving
equations with non-linear coefficients or for coupling between PDEs.

The governing equation for the temperature field is the heat flux equation, with a source due to the latent heat of
solidification

OAT o
- =DyVAT + — +c(Ty - T
It T +8t+ (To )
>>> DT = 2.25
>>> g = Variable(0.)
>> T_0 = -0.1
>>> heatEq = (TransientTerm(var=dT)

== DiffusionTerm(coeff=DT, var=dT)
+ TransientTerm (var=phase)
+ g * T_0 - ImplicitSourceTerm(coeff=qg, var=dT))

The governing equation for the phase field is

9¢

Togp = ¥ DV6 + 6(1 — @)m(6, AT) — 25| V6| — *4|V|*

where

m(p, AT) = ¢ — % - % arctan (ko AT)

represents a source of anisotropy. The coefficient D is an anisotropic diffusion tensor in two dimensions

9B
1+c —CcH=
D=0a?(1+ch) 655 ) oy
C5o + cf
2 . . . .
where § = %, d = tan (%w), 1) = 0 + arctan gi;gz, 0 is the orientation, and NV is the symmetry.
>>> alpha = 0.015
>>> ¢ = 0.02
>>> N = 4.
>>> psi = theta.arithmeticFaceValue + numerix.arctan2 (phase.faceGradl[l],
phase.faceGrad[0])
>>> Phi = numerix.tan(N % psi / 2)
>>> PhiSqg = Phix«2
>>> beta = (1. - PhiSq) / (1. + Phisq)
>>> DbetaDpsi = -N * 2 » Phi / (1 + PhiSq)
>>> Ddia = (1.+ c = beta)

>>> Doff = c % DbetaDpsi

>>> I0 = Variable(value=((1,0), (0,1)))

>>> I1 = Variable (value=((0,-1), (1,0)))

>>> D = alphax*2 % Ddia = (Ddia * IO + Doff x I1)

With these expressions defined, we can construct the phase field equation as

>>> tau_phase = 3e-4
>>> kappal = 0.9
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>>> kappa2 = 20.

>>> epsilon = 0.008
>>> s = 0.01
>>> thetaMag = theta.grad.mag
>>> phaseEq = (TransientTerm(coeff=tau_phase, var=phase)
== DiffusionTerm(coeff=D, var=phase)
+ ImplicitSourceTerm(coeff=((phase - 0.5 - kappal / numerix.pi * numerix.arctan (kappa:

* (1 — phase)
(2 = s + epsilon**2 * thetaMag) =* thetaMag),
var=phase))

The governing equation for orientation is given by

200 a2 5 2
PG = V- |6 (g4 ¢) vl

where

P(w) =1—exp(—pw) + %eXp (—pw)

The theta equation is built in the following way. The details for this equation are fairly involved, see J.A. Warren et
al.. The main detail is that a source must be added to correct for the discretization of theta on the circle.

>>> tau_theta = 3e-3

>>> mu = le3

>>> gamma = le3

>>> thetaSmallValue = le-6

>>> phaseMod = phase + ( phase < thetaSmallValue ) * thetaSmallValue
>>> beta_theta = 1leb

>>> expo = epsilon x beta_theta * theta.grad.mag

>>> expo = (expo < 100.) % (expo — 100.) + 100.

>>> Pfunc = 1. + numerix.exp(-expo) * (mu / epsilon - 1.)

>>> gradMagTheta = theta.faceGrad.mag

>>> eps = 1. / gamma / 10.
>>> gradMagTheta += (gradMagTheta < eps) =* eps
>>> JGamma = (gradMagTheta > 1. / gamma) * (1 / gradMagTheta - gamma) + gamma

>>> v_theta = phase.arithmeticFaceValue % (s * IGamma + epsilonx=x2)
>>> D_theta = phase.arithmeticFaceValuex*2 * (s * IGamma + epsilon=*x2)

The source term requires the evaluation of the face gradient without the modular operator.
thetagetFaceGradNoMod () evaluates the gradient without modular arithmetic.

>>> thetaEg = (TransientTerm(coeff=tau_theta * phaseModx*2 * Pfunc, var=theta)
== DiffusionTerm(coeff=D_theta, var=theta)
+ PowerLawConvectionTerm(coeff=v_theta » (theta.faceGrad - theta.faceGradNoMod), var=

We seed a circular solidified region in the center

>>> x, y = mesh.cellCenters

>>> numSeeds = 10

>>> numerix.random.seed (12345)

>>> for Cx, Cy, orientation in numerix.random.random([numSeeds, 3]):

radius = dx * 5.

seed = ((x — Cx » nx * dx)**2 + (y — Cy % ny * dy)=**2) < radiusx*2
phase[seed] = 1.

theta[seed] = numerix.pi % (2 * orientation - 1)

and quench the entire simulation domain below the melting point
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>>> dT.setValue (-0.5)

In a real solidification process, dendritic branching is induced by small thermal fluctuations along an otherwise smooth
surface, but the granularity of the Mesh is enough “noise” in this case, so we don’t need to explicitly introduce
randomness, the way we did in the Cahn-Hilliard problem.

FiPy’s viewers are utilitarian, striving to let the user see something, regardless of their operating system or installed
packages, so you the default color scheme of grain orientation won’t be very informative “out of the box”. Because
all of Python is accessible and FiPy is object oriented, it is not hard to adapt one of the existing viewers to create a
specialized display:

>>> if _ name_ == "_ _main__ ":
try:
class OrientationViewer (Matplotlib2DGridViewer) :
def _ _init__ (self, phase, orientation, title=None, limits={}, »+kwlimits):
self.phase = phase
Matplotlib2DGridViewer.___init__ (self, vars=(orientation,), title=title,

limits=1limits, colorbar=None, *x*kwlimits)

# make room for non—-existent colorbar

# stolen from matplotlib.colorbar.make axes

# https://github.com/matplotlib/matplotlib/blob

# /eclcd2567521cl05a451cel5e06del0715£8b54d/11ib
# /matplotlib/colorbar.py#L838

fraction = 0.15

pb = self.axes.get_position(original=True) .frozen|()
pad = 0.05
x1l = 1.0-fraction

pbl, pbx, pbcb = pb.splitx(xl-pad, x1)
panchor = (1.0, 0.5)
self.axes.set_position (pbl)
self.axes.set_anchor (panchor)

# make the gnomon

fig = self.axes.get_figure()

self.gnomon = fig.add_axes([0.85, 0.425, 0.15, 0.15], polar=True)

self.gnomon.set_thetagrids([180, 270, 0, 907,
[r"S\pm\pis", r"S-\frac{\pi}{2}$", "$0S", r"S+\frac{\i
frac=1.3)

self.gnomon.set_theta_zero_location("N")

self.gnomon.set_theta_direction(-1)

self.gnomon.set_rgrids([1.]1, [""])

N = 100

theta = numerix.arange (-numerix.pi, numerix.pi, 2 * numerix.pi / N)

radii = numerix.ones ((N,))

bars = self.gnomon.bar (theta, radii, width=2 * numerix.pi / N, bottom=0.0)

colors = self._orientation_and_phase_to_rgb(orientation=numerix.array ([thetal), 1

for ¢, t, bar in zip(colors[0], theta, bars):
bar.set_facecolor (c)
bar.set_edgecolor (c)

def _reshape(self, wvar):
7/’ return values of var in an 2D array’’’
return numerix.reshape (numerix.array (var),
var.mesh.shape[::-1]) [::-1]

@staticmethod
def _orientation_and_phase_to_rgb(orientation, phase):
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from matplotlib import colors

hsv = numerix.empty (orientation.shape + (3,))

hsv[..., 0] = (orientation / numerix.pi + 1) / 2.
hsv[..., 1] = 1.
hsv[..., 2] = phase

return colors.hsv_to_rgb (hsv)

@property
def _data(self):
’’’convert phase and orientation to rgb image array

orientation (-pi, pi) -> hue (0, 1)
phase (0, 1) -> value (0, 1)

rrs

orientation = self._reshape(self.vars[0])
phase = self._reshape(self.phase)

return self._orientation_and_phase_to_rgb(orientation, phase)

def _plot (self):
self.image.set_data(self._data)

from matplotlib import pyplot

pyplot.ion ()

w, h = pyplot.figaspect(l.)

fig = pyplot.figure(figsize=(2+w, h))

timer = fig.text (0.1, 0.9, "t = 5.37f" % 0, fontsize=18)

viewer = MultiViewer (viewers= (MatplotlibViewer (vars=dT,
cmap=pyplot.cm.hot,
datamin=-0.5,
datamax=0.5,
axes=fig.add_subplot (121)),
OrientationViewer (phase=phase,
orientation=theta,
title=theta.name,
axes=fig.add_subplot (122))))
except ImportError:
viewer = MultiViewer (viewers= (Viewer (vars=dT,
datamin=-0.5,
datamax=0.5),
Viewer (vars=phase,
datamin=0.,
datamax=1.),
Viewer (vars=theta,
datamin=-numerix.pi,
datamax=numerix.pi)))

viewer.plot ()

and iterate the solution in time, plotting as we go,

>>> eq = thetaEqg & phaseEqg & heatEg

>>> if _ name_ == "_ main_ ":
total_time = 2.

else:
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>>>
>>>
>>>

>>>

total_time = dt = 10
elapsed = 0.

save_interval = 0.002
save_at = save_interval
while elapsed < total_time:

if elapsed > 0.3:
g.value = 100
phase.updateOld()
dT.updateOld ()
theta.updateOld()
eg.solve (dt=dt)
elapsed += dt

if name == "__main__" and elapsed >= save_at:

timer.set_text ("t =

viewer.plot ()

save_at += save_interval
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The non-uniform temperature results from the release of latent heat at the solidifying interface. The dendrite arms
grow fastest where the temperature gradient is steepest.
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13

Level Set Examples

examples.levelSet.distanceFunction.meshlD Create alevel set variable in one dimension.
examples.levelSet.distanceFunction.circle Solve the level set equation in two dimensions for a circle.
examples.levelSet.advection.meshlD Solve the distance function equation in one dimension and then advec
examples.levelSet.advection.circle Solve a circular distance function equation and then advect it.

13.1 examples.levelSet.distanceFunction.mesh1D

Create a level set variable in one dimension.

The level set variable calculates its value over the domain to be the distance from the zero level set. This can be
represented succinctly in the following equation with a boundary condition at the zero level set such that,

with the boundary condition, ¢ = 0 at x = L/2.

0¢ _

=1
ox

The solution to this problem will be demonstrated in the following script. Firstly, setup the parameters.

>>> from fipy import =«

>>> dx = 0.

>>> nx = 1

Construct the

5
0

mesh.

>>> from fipy.tools import serialComm
GridlD (dx=dx, nx=nx, communicator=serialComm)

>>> mesh =

Construct a distanceVariable object.

>>> var =

>>> x = mesh.cellCenters[0]
where=x > dx * nx / 2)

>>> var.se

DistanceVariable (name=’"level set variable’,

tvalue (1,

mesh=mesh,
value=-1.,
hasOld=1)

Once the initial positive and negative regions have been initialized the calcDistanceFunction() method can be used to
recalculate var as a distance function from the zero level set.

>>> var.calcDistanceFunction ()

The problem can then be solved by executing the solve () method of the equation.

14
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>>> if name == '_main__":
viewer = Viewer (vars=var, datamin=-5., datamax=5.)
viewer.plot ()

The result can be tested with the following commands.

>>> print numerix.allclose(var, x - dx * nx / 2)
1

13.2 examples.levelSet.distanceFunction.circle

Solve the level set equation in two dimensions for a circle.
The 2D level set equation can be written,
Vol =1
and the boundary condition for a circle is given by, ¢ = 0 at (z — L/2)% + (y — L/2)? = (L/4)%
The solution to this problem will be demonstrated in the following script. Firstly, setup the parameters.

>>> from fipy import =«

>>> dx = 1.
>>> dy = 1.
>>> nx = 11
>>> ny = 11
>>> Lx = nx » dx

>>> Ly = ny »* dy

Construct the mesh.

>>> from fipy.tools import serialComm
>>> mesh = Grid2D (dx=dx, dy=dy, nx=nx, ny=ny, communicator=serialComm)

Construct a distanceVariable object.

>>> var = DistanceVariable (name=’level set variable’,
mesh=mesh,
value=-1.,
has0Old=1)

>>> x, y = mesh.cellCenters
>>> var.setValue(l, where=(x — Lx / 2.)*x2 + (y — Ly / 2.)x%2 < (Lx / 4.)%%2)

>>> var.calcDistanceFunction (order=1)

>>> if name == '_main__":
viewer = Viewer (vars=var, datamin=-5., datamax=5.)
viewer.plot ()

The result can be tested with the following commands.

>>> dYy = dy / 2.

>>> dX = dx / 2.

>>> mm = min (dX, dY)

>>> ml = dY » dX / numerix.sqrt (dY+*2 + dXxx2)
>>> def evalCell (phix, phiy, dx, dy):
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/2.

aa = dy#x*2 + dxx*2
bb = -2 * ( phix * dy**2 + phiy * dx=*x2)
cc = dy**2 * phixx*2 + dx**x2 * phiy**2 - dx**2 x dyx=*2
sgqr = numerix.sqgrt (bb*+x2 - 4. % aa = cc)
return ((-bb - sqr) / 2. / aa, (-bb + sqr)
>>> vl = evalCell (-dY, —ml, dx, dy) [0]
>>> v2 = evalCell (-ml, -dX, dx, dy) [0]
>>> v3 = evalCell (ml, ml, dx, dy)[1]
>>> v4 = evalCell(v3, dY, dx, dy)[1l]
>>> v5 = evalCell (dX, v3, dx, dy)I[1l]
>>> MASK = -1000.
>>> trialValues = CellVariable (mesh=mesh, value= \

numerix.array ((

MASK, MASK, MASK, MASK, MASK, MASK, MASK,
MASK, MASK, MASK, MASK,-3+dY,-3xdY,-3xdY,
MASK, MASK, MASK, vl, -dy, -dy, -dy,
MASK, MASK, v2, -ml, ml, dy, ml,
MASK, -dX=x3, -dX, ml, v3, v4, v3,
MASK, —-dX=%3, -dX, dx, v5, MASK, v5,
MASK, —-dX=%3, -dX, ml, v3, v4, v3,
MASK, MASK, v2, -ml, ml, dy, ml,
MASK, MASK, MASK, vl, -dy, -dy, -dy,
MASK, MASK, MASK, MASK,-3xdY,-3+dY,-3xdY,
MASK, MASK, MASK, MASK, MASK, MASK, MASK,
>>> var[numerix.array(trialValues == MASK)] = MASK
>>> print numerix.allclose(var, trialValues)

True

MASK,
MASK,
vl,
-ml,
ml,
dax,
ml,
-ml,
vl,
MASK,
MASK,

13.3 examples.levelSet.advection.mesh1D

Solve the distance function equation in one dimension and then advect it.

This example first solves the distance function equation in one dimension:

Vo] =1

with ¢ =0atz = L/5.

The variable is then advected with,

¢

En +u-Vop=0

/ aa)
MASK, MASK, MASK,
MASK, MASK, MASK,
MASK, MASK, MASK,
v2, MASK, MASK,
—dx, -dx+3, MASK,
-dX, -dX«3, MASK,
~dx,-dx#3, MASK,
v2, MASK, MASK,
MASK, MASK, MASK,
MASK, MASK, MASK,
MASK, MASK, MASK), ’d’))

The scheme used in the FirstOrderAdvectionTerm preserves the var as a distance function.

The solution to this problem will be demonstrated in the following script. Firstly, setup the parameters.

>>> from fipy import =«
>>> velocity = 1.

dx = 1.

10
timeStepDuration = 1.
steps = 2

. =
interfacePosition = L / 5.

>>>
>>> nx =
>>>
>>>
>>> nx » dx

>>>

13.3. examples.levelSet.advection.mesh1D
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Construct the mesh.

>>> from fipy.tools import serialComm
>>> mesh = GridlD (dx=dx, nx=nx, communicator=serialComm)

Construct a distanceVariable object.

>>> var = DistanceVariable (name=’'level set variable’,
mesh=mesh,
value=-1.,
e has0Old=1)
>>> var.setValue(l., where=mesh.cellCenters[0] > interfacePosition)

>>> var.calcDistanceFunction ()

The advectionEquation is constructed.

>>> advEqn = TransientTerm() + FirstOrderAdvectionTerm(velocity)

The problem can then be solved by executing a serious of time steps.
>>> if _ name_ == ’_ main_ ':
viewer = Viewer (vars=var, datamin=-10., datamax=10.)
viewer.plot ()
for step in range (steps):
var.updateOld()
advEgn.solve (var, dt=timeStepDuration)
viewer.plot ()

The result can be tested with the following code:

>>> for step in range (steps):
var.updateOld ()
.. advEqgn.solve (var, dt=timeStepDuration)
>>> x = mesh.cellCenters[0]
>>> distanceTravelled = timeStepDuration * steps * velocity

>>> answer = x - interfacePosition - timeStepDuration * steps * velocity
>>> answer = numerix.where (x < distanceTravelled,
x[0] - interfacePosition, answer)

>>> print var.allclose (answer)
1

13.4 examples.levelSet.advection.circle

Solve a circular distance function equation and then advect it.

This example first imposes a circular distance function:

The variable is advected with,

9¢
— 4+ u-Vp=0
ot ¢
The scheme used in the FirstOrderAdvectionTerm preserves the var as a distance function. The solution to

this problem will be demonstrated in the following script. Firstly, setup the parameters.
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>>> from fipy import =«

>>> 1L, = 1.

>>> N = 25

>>> velocity = 1.

>>> cfl = 0.1

>>> velocity = 1.

>>> distanceToTravel = L / 10.

>>> radius = L / 4.

>>> dL =L / N

>>> timeStepDuration = cfl * dL / velocity

>>> steps = int (distanceToTravel / dL / cfl)

Construct the mesh.

>>> mesh = Grid2D (dx=dL, dy=dL, nx=N, ny=N)

Construct a distanceVariable object.

>>> var = DistanceVariable (
name = ’'level set variable’,
mesh = mesh,
value = 1.,
hasOld = 1)

Initialise the distanceVariable to be a circular distance function.

>>> x, y = mesh.cellCenters
>>> initialArray = numerix.sgrt((x — L / 2.)*%2 + (y — L / 2.)x%2) - radius
>>> var.setValue (initialArray)

The advection equation is constructed.

>>> advEqn = TransientTerm() + FirstOrderAdvectionTerm(velocity)

The problem can then be solved by executing a serious of time steps.

>>> if _ name_ == '_ main_ ':
viewer = Viewer (vars=var, datamin=-radius, datamax=radius)
viewer.plot ()
for step in range (steps):
var.updateOld()
advEgn.solve (var, dt=timeStepDuration)
viewer.plot ()

The result can be tested with the following commands.

>>> for step in range (steps):
var.updateOld ()
advEgn.solve (var, dt=timeStepDuration)

>>> x = numerix.array (mesh.cellCenters[0])

>>> distanceTravelled = timeStepDuration * steps = velocity

>>> answer = initialArray - distanceTravelled

>>> answer = numerix.where (answer < 0., —-1001., answer)

>>> solution = numerix.where (answer < 0., -1001., numerix.array(var))
>>> numerix.allclose (answer, solution, atol=4.7e-3)

1

If the advection equation is built with the AdvectionTerm () the result is more accurate,

13.4. examples.levelSet.advection.circle
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>>> var.setValue (initialArray)
>>> advEgn = TransientTerm() + AdvectionTerm(velocity)
>>> for step in range (steps):

var.updateOld ()

advEgn.solve (var, dt=timeStepDuration)

>>> solution = numerix.where (answer < 0., -1001., numerix.array(var))
>>> numerix.allclose (answer, solution, atol=1.02e-3)
1

13.5 Superconformal Electrodeposition Examples

13.5.1 The Damascene Process

State of the art manufacturing of semiconductor devices involves the electrodeposition of copper for on-chip wiring
of integrated circuits. In the Damascene process interconnects are fabricated by first patterning trenches in a dielectric
medium and then filling by metal electrodeposition over the entire wafer surface. This metalization process, pioneered
by IBM, depends on the use of electrolyte additives that effect the local metal deposition rate.

13.5.2 Superfill

The additives in the electrolyte affect the local deposition rate in such a way that bottom-up filling occurs in trenches
or vias. This process, known as superconformal electrodeposition or superfill, is demonstrated in the following figure.
The figure shows sequential images of bottom-up superfilling of submicrometer trenches by copper deposition from
an electrolyte containing PEG-SPS-CI. Preferential metal deposition at the bottom of the trenches followed by bump
formation above the filled trenches is evident.

100 nm

13.5.3 The CEAC Mechanism

This process has been demonstrated to depend critically on the inclusion of additives in the electrolyte. Recent publi-
cations propose Curvature Enhanced Accelerator Coverage (CEAC) as the mechanism behind the superfilling process
[9]. In this mechanism, molecules that accelerate local metal deposition displace molecules that inhibit local metal
deposition on the metal/electrolyte interface. For electrolytes that yield superconformal filling of fine features, this
buildup happens relatively slowly because the concentration of accelerator species is much more dilute compared to
the inhibitor species in the electrolyte. The mechanism that leads to the increased rate of metal deposition along the
bottom of the filling trench is the concurrent local increase of the accelerator coverage due to decreasing local surface
area, which scales with the local curvature (hence the name of the mechanism). A good overview of this mechanism
can be found in [32].

13.5.4 Using FiPy to model Superfill

Example ?? provides a simple way to use FiPy to model the superfill process. The example includes a detailed
description of the governing equations and feature geometry. It requires the user to import and execute a function at
the python prompt. The model parameters can be passed as arguments to this function. In future all superfill examples
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will be provided with this type of interface. Example ?? has the same functionality as ?? but demonstrates how to
write a new script in the case where the existing suite of scripts do not meet the required needs.

In general it is a good idea to obtain the Mayavi plotting package for which a specialized superfill viewer class has been
created, see Installation. The other standard viewers mentioned in Installation are still adequate although they do not
give such clear images that are tailored for the superfill problem. The images below demonstrate the Mayavi viewing
capability. Each contour represents sequential positions of the interface and the color represents the concentration of
accelerator as a surfactant. The areas of high surfactant concentration have an increased deposition rate.
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examples.levelSet.electroChem.simpleTrenchSystem Model electrochemical superfill using the CEAC mechanis
examples.levelSet.electroChem.gold Model electrochemical superfill of gold using the CEAC m
examples.levelSet.electroChem.leveler Model electrochemical superfill of copper with leveler and
examples.levelSet.electroChem.howToWriteAScript Tutorial for writing an electrochemical superfill script.

13.6 examples.levelSet.electroChem.simpleTrenchSystem

Model electrochemical superfill using the CEAC mechanism.

This input file is a demonstration of the use of FiPy for modeling electrodeposition using the CEAC mechanism.
The material properties and experimental parameters used are roughly those that have been previously published
[NIST:damascene:2003]].

To run this example from the base fipy directory type:

$ python examples/levelSet/electroChem/simpleTrenchSystem.py

at the command line. The results of the simulation will be displayed and the word finished in the terminal at the end
of the simulation. To run with a different number of time steps change the numberOfSteps argument as follows,

>>> runSimpleTrenchSystem (numberOfSteps=2, displayViewers=False)
1

Change the displayViewers argument to True if you wish to see the results displayed on the screen. Example
examples.levelSet.electroChem.simpleTrenchSystem gives explanation for writing new scripts or
modifying existing scripts that are encapsulated by functions.

Any argument parameter can be changed. For example if the initial catalyst coverage is not 0, then it can be reset,

>>> runSimpleTrenchSystem (numberOfSteps=2, catalystCoverage=0.1, displayViewers=False)
0

The following image shows a schematic of a trench geometry along with the governing equations for mod-
eling electrodeposition with the CEAC mechanism. All of the given equations are implemented in the
examples.levelSet.electroChem.simpleTrenchSystem.runSimpleTrenchSystem () function.
As stated above, all the parameters in the equations can be changed with function arguments.
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The following table shows the symbols used in the governing equations and their corresponding arguments to the
runSimpleTrenchSystem () function. The boundary layer depth is intentionally small in this example in order
not to complicate the mesh. Further examples will simulate more realistic boundary layer depths but will also have

more complex meshes requiring the gmsh software.
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Symbol Description Keyword Argument Value Unit
Deposition Rate Parameters
v deposition rate ms~!
i current density Am~2
Q2 molar volume molarVolume 7.1x107%  m3 mol~!
n  ion charge charge 2
F' Faraday’s constant faradaysConstant 9.6x10™*  Cmol~!
ip  exchange current density Am™2
o transfer coefficient transferCoefficient 0.5
7 overpotential overpotential -0.3 \"
R gas constant gasConstant 8.314 JK= ! mol~!
T temperature temperature 298.0 K
by current density for §° currentDensity0 0.26 Am™2
b1  current density for 6 currentDensityl 45.0 Am™2
Metal Ion Parameters
¢, metal ion concentration metalConcentration 250.0 mol m—3
co®  far field metal ion concentration metalConcentration 250.0 mol m~—3
D,, metal ion diffusion coefficient metalDiffusion 5610710 m2s!
Catalyst Parameters
0 catalyst surfactant concentration catalystCoverage 0.0
cg bulk catalyst concentration catalystConcentration 50x1073  molm—3
cg®  far field catalyst concentration catalystConcentration 50x1073%  molm™3
Dy catalyst diffusion coefficient catalystDiffusion 1.0x107  m2s7!
I' catalyst site density siteDensity 9.8x1076  molm™2
k  rate constant m? mol ! s7!
ko rate constant for n° rateConstant0 1.76 m? mol~! s7!
ks rate constant for 7> rateConstant3 -245.0x1076  m3mol's"t V3
Geometry Parameters
D  trench depth trenchDepth 05x107% m
D/W  trench aspect ratio aspectRatio 2.0
S trench spacing trenchSpacing 0.6x1076 m
J boundary layer depth boundaryLayerDepth 03x1076¢ m
Simulation Control Parameters
computational cell size cellSize 0.Ix107" m
number of time steps numberOfSteps 5
whether to display the viewers displayViewers True

If the MayaVi plotting software is installed (see Installation) then a plot should appear that is updated every 20 time
steps and will eventually resemble the image below.

13.6. examples.levelSet.electroChem.simpleTrenchSystem
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13.7 examples.levelSet.electroChem.gold

Model electrochemical superfill of gold using the CEAC mechanism.

This input file is a demonstration of the use of FiPy for modeling gold superfill. The material properties and experi-
mental parameters used are roughly those that have been previously published [24].

To run this example from the base fipy directory type:
$ python examples/levelSet/electroChem/gold.py
at the command line. The results of the simulation will be displayed and the word finished in the terminal at the

end of the simulation. The simulation will only run for 10 time steps. To run with a different number of time steps
change the numberOfSteps argument as follows,

>>> runGold (numberOfSteps=10, displayViewers=False)
1

Change the displayViewers argument to True if you wish to see the results displayed on the screen. This
example has a more realistic default boundary layer depth and thus requires gmsh to construct a more complex mesh.

There are a few differences between the gold superfill model presented in this example and in
examples.levelSet.electroChem.simpleTrenchSystem. Most default values have changed to account
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for a different metal ion (gold) and catalyst (lead). In this system the catalyst is not present in the electrolyte but in-
stead has a non-zero initial coverage. Thus quantities associated with bulk catalyst and catalyst accumulation are not
defined. The current density is given by,

Z:%(b0+b19)

The more common representation of the current density includes an exponential part. Here it is buried in by and b;.
The governing equation for catalyst evolution includes a term for catalyst consumption on the interface and is given
by

0 = Jvb — kv

where k. is the consumption coefficient (consumptionRateConstant). The trench geometry is also given a
slight taper, given by taperAngle.

If the MayaVi plotting software is installed (see /nstallation) then a plot should appear that is updated every 10 time
steps and will eventually resemble the image below.

SRMECCER e

cafalyst coverage
0.00 1.00

13.8 examples.levelSet.electroChem.leveler

Model electrochemical superfill of copper with leveler and accelerator additives.

This input file is a demonstration of the use of FiPy for modeling copper superfill with leveler and accelerator additives.
The material properties and experimental parameters used are roughly those that have been previously published [25].

To run this example from the base fipy directory type:
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$ python examples/levelSet/electroChem/leveler.py

at the command line. The results of the simulation will be displayed and the word finished in the terminal at the
end of the simulation. The simulation will only run for 200 time steps. To run with a different number of time steps
change the numberOfSteps argument as follows,

>>> runlLeveler (numberOfSteps=10, displayViewers=False, cellSize=0.25e-7)
1

Change the displayViewers argument to True if you wish to see the results displayed on the screen. This
example requires gmsh to construct the mesh.

This example models the case when suppressor, accelerator and leveler additives are present in the electrolyte. The
suppressor is assumed to absorb quickly compared with the other additives. Any unoccupied surface sites are im-
mediately covered with suppressor. The accelerator additive has more surface affinity than suppressor and is thus
preferential adsorbed. The accelerator can also remove suppressor when the surface reaches full coverage. Similarly,
the leveler additive has more surface affinity than both the suppressor and accelerator. This forms a simple set of
assumptions for understanding the behavior of these additives.

The following is a complete description of the equations for the model described here. Any equations that have been
omitted are the same as those given in examples.levelSet.electroChem.simpleTrenchSystem. The
current density is governed by

1= = {zﬂj (exp T exp T

where j represents .S for suppressor, A for accelerator, L for leveler and V' for vacant. This model assumes a linear
interpolation between the three cases of complete coverage for each additive or vacant substrate. The governing
equations for the surfactants are given by,

9[, = kol + kl+CL (1 — 9L) — k:EUGL,
0o = KOs+ kica(1—04—01) —kpepfa — k05,
Os=1—604—0
0y = 0.
It has been found experimentally that iy, = 5.

If the surface reaches full coverage, the equations do not naturally prevent the coverage rising above full coverage due
to the curvature terms. Thus, when 67, + 64 = 1 then the equation for accelerator becomes 64 = —0;, and when
01 = 1, the equation for leveler becomes 0, = —k v0y,.

The parameters k:j, k’, and g are both functions of n given by,

—Oszn
kX:k/’XoeXpT,
A
ky = By + +exp(By (n+V,
A d eXp(Ba(n—i—Vd)) xp (By (1 1))
q=mn+b.

The following table shows the symbols used in the governing equations and their corresponding arguments for the
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runLeveler () function.

Symbol  Description Keyword Argument Value Unit
Deposition Rate Parameters
v deposition rate ms—!
14 accelerator current density iOAccelerator Am™2
i1, leveler current density iOLeveler Am~2
Q0 molar volume molarVolume 7.1x107%  m3 mol~!
n  ion charge charge 2
F  Faraday’s constant faradaysConstant 9.6x107*  Cmol™!
1o exchange current density Am—?
a4 accelerator transfer coefficient alphaAccelerator 0.4
ag leveler transfer coefficient alphaleveler 0.5
n  overpotential overpotential -0.3 v
R gas constant gasConstant 8.314 J K mol~!
T temperature temperature 298.0 K
Ton Parameters
c; ion concentration ionConcentration 250.0 mol m—3
c%° far field ion concentration ionConcentration 250.0 mol m—?
D; ion diffusion coefficient ionDiffusion 5.6x10710 @2 g1
Accelerator Parameters
04 accelerator coverage acceleratorCoverage 0.0
c4a accelerator concentartion acceleratorConcentration 50x1073  molm—3
¢ far field accelerator concentration acceleratorConcentration 50x107%  molm™3
D4 catalyst diffusion coefficient catalystDiffusion 1.0x107%  m2s!
'y  accelerator site density siteDensity 9.8x107%  molm~—2
k% accelerator adsorption m3 mol~! s~!
k%, accelerator adsorption coeff kAccelerator0 2.6x107*  m?mol!s!
ayp  accelerator adsorption coeff alphaAdsorption 0.62
ky  accelerator consumption coeff
B, experimental parameter Bd -40.0
B,  experimental parameter Bd 60.0
V4 experimental parameter Bd 9.8x1072
B; experimental parameter Bd 8.0x1074
Geometry Parameters
D  trench depth trenchDepth 05x107% m
D/W  trench aspect ratio aspectRatio 2.0
S trench spacing trenchSpacing 0.6x107% m
0 boundary layer depth boundaryLayerDepth 03x107% m
Simulation Control Parameters
computational cell size cellSize 0.Ix1077 m
number of time steps numberOfSteps 5
whether to display the viewers displayViewers True

The following images show accelerator and leveler contour plots that can be obtained by running this example.

13.8. examples.levelSet.electroChem.leveler
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13.9 examples.levelSet.electroChem.howToWriteAScript

Tutorial for writing an electrochemical superfill script.

This input file demonstrates how to create a new superfill script if the existing suite of scripts do not meet the required
needs. It provides the functionality of examples.levelSet.electroChem.simpleTrenchSystem.

To run this example from the base fipy directory type:

$ python examples/levelSet/electroChem/howToWriteAScript.py —-numberOfElements=10000 —-numberOfSteps:

at the command line. The results of the simulation will be displayed and the word finished in the terminal at the
end of the simulation. To obtain this example in a plain script file in order to edit and run type:

$ python setup.py copy_script —-From examples/levelSet/electroChem/howToWriteAScript.py —-To myScript

in the base FiPy directory. The file myScript . py will contain the script.

The following is an explicit explanation of the input commands required to set up and run the problem. At the top of
the file all the parameter values are set. Their use will be explained during the instantiation of various objects and are
the same as those explained in examples. levelSet.electroChem.simpleTrenchSystem.

The following parameters (all in S.I. units) represent,

* physical constants,
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>>> faradaysConstant = 9.6ed
>>> gasConstant = 8.314
>>> transferCoefficient = 0.5

* properties associated with the catalyst species,

>>> rateConstant0 = 1.76

>>> rateConstant3 = -245e-6
>>> catalystDiffusion = 1e-9
>>> siteDensity = 9.8e-6

* properties of the cupric ions,

>>> molarVolume = 7.1le-6
>>> charge = 2
>>> metalDiffusionCoefficient = 5.6e-10

» parameters dependent on experimental constraints,

>>> temperature = 298.

>>> overpotential = -0.3

>>> bulkMetalConcentration = 250.
>>> catalystConcentration = 5e-3
>>> catalystCoverage = 0.

» parameters obtained from experiments on flat copper electrodes,

>>> currentDensity0 = 0.26
>>> currentDensityl 45.

* general simulation control parameters,

>>> cflNumber = 0.2

>>> numberOfCellsInNarrowBand = 10
>>> cellsBelowTrench = 10

>>> cellSize = 0.le-7

 parameters required for a trench geometry,

>>> trenchDepth = 0.5e-6

>>> aspectRatio = 2.

>>> trenchSpacing = 0.6e-6

>>> boundaryLayerDepth = 0.3e-6

The hydrodynamic boundary layer depth (boundaryLayerDepth) is intentionally small in this example to keep
the mesh at a reasonable size.
Build the mesh:
>>> from fipy.tools.parser import parse
>>> numberOfElements = parse (' ——numberOfElements’, action=’store’,
.. type="1int’, default=-1)

>>> numberOfSteps = parse ('’ ——numberOfSteps’, action=’'store’,

type="1int’, default=2)
>>> from fipy import =
>>> if numberOfElements != -1:

pos = trenchSpacing * cellsBelowTrench / 4 / numberOfElements

sqr = trenchSpacing * (trenchDepth + boundaryLayerDepth) \

/ (2 * numberOfElements)
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cellSize = pos + numerix.sqgrt (pos**2 + sqgr)
else:
cellSize = 0.le-7

cellsBelowTrench \
+ int ((trenchDepth + boundaryLayerDepth) / cellSize)
int (trenchSpacing / 2 / cellSize)

>>> yCells

>>> xCells

>>> from metalIonDiffusionEquation import buildMetalIonDiffusionEquation
>>> from adsorbingSurfactantEquation import AdsorbingSurfactantEquation

>>> from fipy import serialComm

>>> mesh = Grid2D (dx=cellSize,
dy=cellSize,
nx=xCells,
ny=yCells,
communicator=serialComm)

A distanceVariable object, ¢, is required to store the position of the interface.

The distanceVariable calculates its value so that it is a distance function (i.e. holds the distance at any point in
the mesh from the electrolyte/metal interface at ¢ = 0) and |V¢| = 1.

First, create the ¢ variable, which is initially set to -1 everywhere. Create an initial variable,

>>> narrowBandWidth = numberOfCellsInNarrowBand * cellSize
>>> distanceVar = DistanceVariable (

name='distance variable’,

mesh= mesh,

value=-1.,

has0Old=1)

The electrolyte region will be the positive region of the domain while the metal region will be negative.

>>> pottomHeight = cellsBelowTrench % cellSize
>>> trenchHeight = bottomHeight + trenchDepth

>>> trenchWidth = trenchDepth / aspectRatio

>>> gideWidth = (trenchSpacing - trenchWidth) / 2

>>> x, y = mesh.cellCenters
>>> distanceVar.setValue(l., where=(y > trenchHeight)
| ((y > bottomHeight)
& (x < xCells * cellSize - sideWidth)))

>>> distanceVar.calcDistanceFunction (order=2)

The distanceVariable has now been created to mark the interface. Some other variables need to be created that
govern the concentrations of various species.

Create the catalyst surfactant coverage, 6, variable. This variable influences the deposition rate.

>>> catalystVar = SurfactantVariable (
name="catalyst variable",
value=catalystCoverage,
distanceVar=distanceVar)

Create the bulk catalyst concentration, cg, in the electrolyte,

>>> pbulkCatalystVar = CellVariable(
name='bulk catalyst variable’,
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mesh=mesh,
value=catalystConcentration)

Create the bulk metal ion concentration, ¢,,, in the electrolyte.

>>> metalVar = CellVariable (
name='metal variable’,
mesh=mesh,
value=bulkMetalConcentration)

The following commands build the depositionRateVariable,v. The depositionRateVariable is given
by the following equation.

iQ

nF

where €) is the metal molar volume, n is the metal ion charge and F' is Faraday’s constant. The current density is given

by
. cfn —aF
i = zo—coo exp <RT 77>

m

where ¢ is the metal ion concentration in the bulk at the interface, c¢2° is the far-field bulk concentration of metal
ions, «v is the transfer coefficient, R is the gas constant, 7" is the temperature and 7 is the overpotential. The exchange
current density is an empirical function of catalyst coverage,

20(9) =bg + b10
The commands needed to build this equation are,

>>> expoConstant = -transferCoefficient » faradaysConstant \
. / (gasConstant * temperature)
>>> tmp = currentDensityl \
x catalystVar.interfaceVar
>>> exchangeCurrentDensity = currentDensity0 + tmp
>>> expo = numerix.exp (expoConstant % overpotential)
>>> currentDensity = expo » exchangeCurrentDensity * metalVar \
/ bulkMetalConcentration
>>> depositionRateVariable = currentDensity » molarVolume \
/ (charge » faradaysConstant)

Build the extension velocity variable vex. The extension velocity uses the extensionEquation to spread the
velocity at the interface to the rest of the domain.

>>> extensionVelocityVariable = CellVariable(
name='extension velocity’,
mesh=mesh,
value=depositionRateVariable)

Using the variables created above the governing equations will be built. The governing equation for surfactant conser-
vation is given by,

0 = Jub + kcy(1 — )

where 0 is the coverage of catalyst at the interface, .J is the curvature of the interface, v is the normal velocity of the
interface, cj is the concentration of catalyst in the bulk at the interface. The value k is given by an empirical function
of overpotential,

k = ko + ksn®

The above equation is represented by the AdsorbingSurfactantEquation in FiPy:
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>>> surfactantEquation = AdsorbingSurfactantEquation (
surfactantVar=catalystVar,
distanceVar=distanceVar,
bulkVar=bulkCatalystVar,
rateConstant=rateConstant0 \
+ rateConstant3 * overpotentialxx3)

The variable ¢ is advected by the advectionEquation given by,

9¢
E + Uex1|v¢| =0
and is set up with the following commands:
>>> advectionEquation = TransientTerm() + AdvectionTerm(extensionVelocityVariable)

The diffusion of metal ions from the far field to the interface is governed by,

e
S = V- DV,
ot Ve

where,

D,, when¢ >0,
0 when ¢ <0

D=

The following boundary condition applies at ¢ = 0,

v
Dn-Ve=—.
n-Ve Q

The metal ion diffusion equation is set up with the following commands.

>>> metalEquation = buildMetalIonDiffusionEquation (
ionVar=metalVar,
distanceVar=distanceVar,
depositionRate=depositionRateVariable,
diffusionCoeff=metalDiffusionCoefficient,
metalIonMolarVolume=molarVolume,

>>> metalVar.constrain (bulkMetalConcentration, mesh.facesTop)
The surfactant bulk diffusion equation solves the bulk diffusion of a species with a source term for the jump from the
bulk to an interface. The governing equation is given by,

Oc
— =V -DV
: V c

where,

Dy wheno¢ >0
0 when ¢ < 0

The jump condition at the interface is defined by Langmuir adsorption. Langmuir adsorption essentially states that the
ability for a species to jump from an electrolyte to an interface is proportional to the concentration in the electrolyte,
available site density and a jump coefficient. The boundary condition at ¢ = 0 is given by,

Di-Ve=—kc(1-0).

The surfactant bulk diffusion equation is set up with the following commands.
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>>> from surfactantBulkDiffusionEquation import buildSurfactantBulkDiffusionEquation
>>> pbulkCatalystEquation = buildSurfactantBulkDiffusionEquation (
bulkVar=bulkCatalystVar,
distanceVar=distanceVar,
surfactantVar=catalystVar,
diffusionCoeff=catalystDiffusion,
rateConstant=rateConstant0 *» siteDensity

>>> bulkCatalystVar.constrain(catalystConcentration, mesh.facesTop)

If running interactively, create viewers.

>>> if _ name_ == '_ _main_ ’:
try:
from mayaviSurfactantViewer import MayaviSurfactantViewer
viewer = MayaviSurfactantViewer (distanceVar,
catalystVar.interfaceVar,
zoomFactor=1e6,
datamax=1.0,
datamin=0.0,
smooth=1)
except:
viewer = MultiViewer (viewers= (

Viewer (distanceVar, datamin=-1le-9, datamax=1le-9),
Viewer (catalystVar.interfaceVar)))
from fipy.models.levelSet.surfactant.matplotlibSurfactantViewer import MatplotlibSurfact:
viewer = MatplotlibSurfactantViewer (catalystVar.interfaceVar)
else:
viewer = None

The levelSetUpdateFrequency defines how often to call the distanceEquation to reinitialize the
distanceVariable to a distance function.

>>> levelSetUpdateFrequency = int (0.8 % narrowBandWidth \
/ (cellSize * cflNumber =* 2))

The following loop runs for numberOfSteps time steps. The time step is calculated with the CFL number and the
maximum extension velocity. v to vey throughout the whole domain using V¢ - Ve = 0.

>>> for step in range (numberOfSteps) :

if viewer is not None:
viewer.plot ()

if step % levelSetUpdateFrequency == 0:
distanceVar.calcDistanceFunction (order=2)

extensionVelocityVariable.setValue (depositionRateVariable())

distanceVar.updateOld()

distanceVar.extendVariable (extensionVelocityVariable, order=2)

dt = cflNumber * cellSize / extensionVelocityVariable.max ()
advectionEquation.solve (distanceVar, dt=dt)

surfactantEquation.solve (catalystVar, dt=dt)

metalEquation.solve (var=metalVar, dt=dt)

bulkCatalystEquation.solve (var=bulkCatalystVar, dt=dt, solver=GeneralSolver())

The following is a short test case. It uses saved data from a simulation with 5 time steps. It is not a test for accuracy

160 Chapter 13. Level Set Examples



FiPy Manual, Release 3.1

but a way to tell if something has changed or been broken.

>>> import os

>>> filepath = os.path.join(os.path.split(__file_ ) [0],
. "simpleTrenchSystem.gz")
>>> ##numerix.savetxt (filepath, numerix.array(catalystVar))
>>> print catalystVar.allclose (numerix.loadtxt (filepath), rtol=le-4)

>>> if name == '_main__":
raw_input (' finished’)
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Cahn Hilliard Examples

examples.cahnHilliard.mesh2DCoupled Solve the Cahn-Hilliard problem in two dimensions.

examples.cahnHilliard.sphere Solves the Cahn-Hilliard problem on the surface of a sphere.

14.1 examples.cahnHilliard.mesh2DCoupled

Solve the Cahn-Hilliard problem in two dimensions.

The spinodal decomposition phenomenon is a spontaneous separation of an initially homogenous mixture into two
distinct regions of different properties (spin-up/spin-down, component A/component B). It is a “barrierless” phase
separation process, such that under the right thermodynamic conditions, any fluctuation, no matter how small, will
tend to grow. This is in contrast to nucleation, where a fluctuation must exceed some critical magnitude before it
will survive and grow. Spinodal decomposition can be described by the “Cahn-Hilliard” equation (also known as
“conserved Ginsberg-Landau” or “model B” of Hohenberg & Halperin)

3(;5_ . %_22
5=V DV<8¢ ev¢).

where ¢ is a conserved order parameter, possibly representing alloy composition or spin. The double-well free energy
function f = (a?/2)¢>(1 — ¢)? penalizes states with intermediate values of ¢ between 0 and 1. The gradient energy
term €2V 2, on the other hand, penalizes sharp changes of ¢. These two competing effects result in the segregation of
¢ into domains of 0 and 1, separated by abrupt, but smooth, transitions. The parameters a and e determine the relative
weighting of the two effects and D is a rate constant.

We can simulate this process in FiPy with a simple script:

>>> from fipy import =

(Note that all of the functionality of NumPy is imported along with FiPy, although much is augmented for FiPy‘s
needs.)

>>> if _ name. == "_ main_ ":
nx = ny = 20
. else:
Ce nx = ny = 10
>>> mesh = Grid2D (nx=nx, ny=ny, dx=0.25, dy=0.25)
>>> phi = CellVariable (name=r"S$\phis$", mesh=mesh)
>>> psi = CellVariable (name=r"$\psi$", mesh=mesh)

We start the problem with random fluctuations about ¢ = 1/2

>>> noise = GaussianNoiseVariable (mesh=mesh,
mean=0.5,
variance=0.01) .value
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>>> phi[:] = noise

FiPy doesn’t plot or output anything unless you tell it to:

>>> if _ name_ == "_ _main_ ":
viewer = Viewer (vars=(phi, psi)) # , datamin=0., datamax=1.)

We factor the Cahn-Hilliard equation into two 2nd-order PDEs and place them in canonical form for FiPy to solve
them as a coupled set of equations.

¢
— =V.DV
ot v
an old af 272
=T (p— M)+ 2L — v
We need to perform the partial derivatives
of 2
= = (a2/2)26(1 - 6)(1 - 29)
¢
> f 2
5gz = (@®/22[1 = 66(1 — 0)
manually.
>>> D = a = epsilon = 1.
>>> dfdphi = a**2 * 2 % phi » (1 - phi) % (1 - 2 * phi)
>>> dfdphi_ = a**2 « 2 x (1 - phi) = (1 - 2 % phi)
>>> d2fdphi2 = a**2 = 2 « (1 — 6 * phi = (1 - phi))
>>> eql = (TransientTerm(var=phi) == DiffusionTerm(coeff=D, var=psi))
>>> eq2 = (ImplicitSourceTerm(coeff=1., var=psi)
== ImplicitSourceTerm(coeff=-d2fdphi2, var=phi) - d2fdphi2 * phi + dfdphi
— DiffusionTerm(coeff=epsilonxx2, var=phi))
>>> eq3 = (ImplicitSourceTerm(coeff=1., var=psi)

== ImplicitSourceTerm(coeff=dfdphi_, wvar=phi)
— DiffusionTerm(coeff=epsilonxx2, var=phi))

>>> eq = eql & eg2

Because the evolution of a spinodal microstructure slows with time, we use exponentially increasing time steps to keep
the simulation “interesting”. The FiPy user always has direct control over the evolution of their problem.

>>> dexp = -5
>>> elapsed = 0.
>>> if _ name_ == "_ _main_ ":
duration = .5e-1
else:
duration = .5e-1

>>> while elapsed < duration:
dt = min (100, numerix.exp (dexp))
elapsed += dt
dexp += 0.01
eqg.solve (dt=dt)
if _ name_ == "_ _main_
viewer.plot ()

>>> if _ name_ == '_ main_ ':
raw_input ("Coupled equations. Press <return> to proceed...")
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These equations can also be solved in FiPy using a vector equation. The variables ¢ and 1) are now stored in a single

variable
>>> var = CellVariable (mesh=mesh, elementshape=(2,))
>>> var[0] = noise
>>> if _ name_ == "_ _main__ ":
viewer = Viewer (vars=(var([0], var[1l]))
>>> D = a = epsilon = 1.
>>> v0 = var[0]
>>> dfdphi = a*x*2 « 2 = v0 = (1 - v0) = (1 - 2 * v0)
>>> dfdphi_ = a**2 * 2 » (1 - v0) » (1 - 2 % v0)
>>> d2fdphi2 = a*x*2 = 2 » (1L — 6 « v0 = (1 - v0))

The source terms have to be shaped correctly for a vector. The implicit source coefficient has to have a shape of (2, 2)

while the explicit source has a shape (2,)

>>> source = (- d2fdphi2 % v0 + dfdphi) = (0, 1)
>>> impCoeff = -d2fdphi2 * ((0, 0),
(L., 0)) + ((0, 0),
(0, =-1.))

This is the same equation as the previous definition of eq, but now in a vector format.

>>> eq = TransientTerm(((1., 0.),
(0., 0.))) == DiffusionTerm ([ ((O.,
(—epsilon*+*2,
>>> dexp = -5
>>> elapsed = 0.

>>> while elapsed < duration:
dt min (100, numerix.exp (dexp))
elapsed += dt
dexp += 0.01
eqg.solve (var=var, dt=dt)
if _ name == "__main_ ":
viewer.plot ()

>>> print numerix.allclose (var,
True

(phi, psi))

D),

0.

1)

+ ImplicitSourceTerm (impC«

14.1. examples.cahnHilliard.mesh2DCoupled
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14.2 examples.cahnHilliard.sphere

Solves the Cahn-Hilliard problem on the surface of a sphere.
This phenomenon canoccur on vesicles (http:/www.youtube.com/watch?v=kDsFP67_ZSE).

>>> from fipy import =«

The only difference from examples.cahnHilliard.mesh2D is the declaration of mesh.

>>> mesh = Gmsh2DIn3DSpace ('’’’
radius = 5.0;
cellSize = 0.3;

// create inner 1/8 shell

Point (1) = {0, 0, 0, cellSize};

Point (2) = {-radius, 0, 0, cellSize};
Point (3) = {0, radius, 0, cellSize};
Point (4) = {0, 0, radius, cellSize};
Circle(1l) = {2, 1, 3};

Circle(2) = {4, 1, 2};

Circle(3) = {4, 3};

Line Loop(l) =

1,
{17 _3/ 2} 7
Ruled Surface(l) =

{1};

// create remaining 7/8 inner shells

tl[] = Rotate {{0,0,1},{0,0,0},Pi/2} {Duplicata{Surface{l};}};

t2[] = Rotate {{0,0,1},{0,0,0},Pi} {Duplicata{Surface{l};}};

t3[] = Rotate {{0,0,1},{0,0,0},Pi*3/2} {Duplicata{Surface{l};}};
t4[] = Rotate {{0,1,0},{0,0,0},-Pi/2} {Duplicata{Surface{l};}};

t5[] = Rotate {{0,0,1},{0,0,0},Pi/2} {Duplicata{Surface{t4[0]};}};
t6[] = Rotate {{0,0,1},{0,0,0},Pi} {Duplicata{Surface{t4[0]};}};
t7[] = Rotate {{0,0,1},{0,0,0},Pix3/2} {Duplicata{Surface{td[0]};}};

// create entire inner and outer shell

Surface Loop(100)={1,t1[0],t2[0]1,t3[0],t7[0]1,t4([0],t5[0]1,t6([0]};
... 77, order=2) .extrude (extrudeFunc=lambda r: 1.1 * r)
>>> phi = CellVariable (name=r"$\phiS$", mesh=mesh)

We start the problem with random fluctuations about ¢ = 1/2

>>> phi.setValue (GaussianNoiseVariable (mesh=mesh,
mean=0.5,
variance=0.01))

FiPy doesn’t plot or output anything unless you tell it to: If MayaviClient is available, we can customize the view
with a sublcass of MayaviDaemon.

>>> if _ name_ == "_ _main__ ":
try:
viewer = MayaviClient (vars=phi,
datamin=0., datamax=1.,
daemon_file="examples/cahnHilliard/sphereDaemon.py")
except:
viewer = Viewer (vars=phi,

datamin=0., datamax=1.,
xmin=-2.5, zmax=2.5)

For FiPy, we need to perform the partial derivative 9 f/0¢ manually and then put the equation in the canonical form
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by decomposing the spatial derivatives so that each Term is of a single, even order:

0

a—(f = V-Dd®[1 - 6¢ (1 — ¢)] V¢ — V- DV V3¢

FiPy would automatically interpolate D  a*%2 x* (1 - 6 » phi * (1 — phi)) onto the faces, where the
diffusive flux is calculated, but we obtain somewhat more accurate results by performing a linear interpolation from
phi at cell centers to PHI at face centers. Some problems benefit from non-linear interpolations, such as harmonic or
geometric means, and FiPy makes it easy to obtain these, too.

>>> PHI = phi.arithmeticFaceValue

>>> D = a = epsilon = 1.

>>> eq = (TransientTerm()
== DiffusionTerm(coeff=D % a»*2 = (1 - 6 % PHI = (1 — PHI)))
— DiffusionTerm(coeff=(D, epsilon*x2)))

Because the evolution of a spinodal microstructure slows with time, we use exponentially increasing time steps to keep
the simulation “interesting”. The FiPy user always has direct control over the evolution of their problem.

>>> dexp = -5

>>> elapsed = 0.

>>> if _ name_ == "_ _main_ ":
duration = 1000.

else:
. duration = le-2

>>> while elapsed < duration:

dt = min (100, numerix.exp (dexp))

elapsed += dt
dexp += 0.01
eqg.solve (phi, dt=dt, solver=DefaultSolver (precon=None))
if _ name_ == "__main__ ":
viewer.plot ()
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Fluid Flow Examples

examples.flow.stokesCavity Solve the Navier-Stokes equation in the viscous limit.

15.1 examples.flow.stokesCavity

Solve the Navier-Stokes equation in the viscous limit.

Many thanks to Benny Malengier <bm@cage.ugent.be> for reworking this example and actually making it work
correctly...see changeset:3799

This example is an implementation of a rudimentary Stokes solver on a collocated grid. It solves the Navier-Stokes
equation in the viscous limit,

Vu-Vi=Vp
and the continuity equation,
V-i=0

where 4 is the fluid velocity, p is the pressure and p is the viscosity. The domain in this example is a square cavity
of unit dimensions with a moving lid of unit speed. This example uses the SIMPLE algorithm with Rhie-Chow
interpolation for collocated grids to solve the pressure-momentum coupling. Some of the details of the algorithm will
be highlighted below but a good reference for this material is Ferziger and Peric [33] and Rossow [rossow:2003]. The
solution has a high degree of error close to the corners of the domain for the pressure but does a reasonable job of
predicting the velocities away from the boundaries. A number of aspects of FiPy need to be improved to have a first
class flow solver. These include, higher order spatial diffusion terms, proper wall boundary conditions, improved mass
flux evaluation and extrapolation of cell values to the boundaries using gradients.

In the table below a comparison is made with the Dolfyn open source code on a 100 by 100 grid. The table shows the
frequency of values that fall within the given error confidence bands. Dolfyn has the added features described above.
When these features are switched off the results of Dolfyn and FiPy are identical.

% frequency of cells | x-velocity error (%) y-velocity error (%) pressure error (%)
90 < 0.1 <0.1 <5

5 0.1t00.6 0.1t00.3 Sto 11

4 0.6to07 03to4 11to 35

1 7 to 96 4 to 80 35t0 179

0 > 96 > 80 > 179

To start, some parameters are declared.

>>> from fipy import =
>>> #from fipy.meshes.grid2D import Grid2D
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>> L = 1.0
>>> N = 50
>>> dL = L / N

>>> viscosity = 1
>>> U = 1.
>>> #0.8 for pressure and 0.5 for velocity are typical relaxation values for SIMPLE
>>> pressureRelaxation = 0.8
>>> velocityRelaxation = 0.5
>>> if _ name_ == '_ _main_ ':
sweeps = 300
else:
sweeps = 5
Build the mesh.

>>> mesh = Grid2D (nx=N, ny=N, dx=dL, dy=dL)

Declare the variables.

>>> pressure = CellVariable (mesh=mesh, name=’'pressure’)
>>> pressureCorrection = CellVariable (mesh=mesh)

>>> xVelocity = CellVariable (mesh=mesh, name=’X velocity’)
>>> yVelocity = CellVariable (mesh=mesh, name=’Y velocity’)

The velocity is required as arank-1 FaceVariable for calculating the mass flux. This is required by the Rhie-Chow
correction to avoid pressure/velocity decoupling.

>>> velocity = FaceVariable (mesh=mesh, rank=1)

Build the Stokes equations in the cell centers.
>>> xVelocityEq = DiffusionTerm(coeff=viscosity) - pressure.grad.dot ([1.,0.1])
1

>>> yVelocityEq = DiffusionTerm(coeff=viscosity) - pressure.grad.dot ([0.,1.])

In this example the SIMPLE algorithm is used to couple the pressure and momentum equations. Let us assume we
have solved the discretized momentum equations using a guessed pressure field p* to obtain a velocity field «*. That
is «* is found from

Cbpﬁ*p = ZGA{L'Z - Vp(vp*)p
f

We would like to somehow correct these initial fields to satisfy both the discretized momentum and continuity equa-
tions. We now try to correct these initial fields with a correction such that ¢ = @* + @' and p = p* + p’, where 4 and
p now satisfy the momentum and continuity equations. Substituting the exact solution into the equations we obtain,

Vu Vi =¢
and
V@ +V-i' =0

We now use the discretized form of the equations to write the velocity correction in terms of the pressure correction.
The discretized form of the above equation results in an equation for p = p/,

(lpﬁgg = Z G,Aﬂ’;l - Vp(vp/)p
f

where notation from Linear Equations is used. The SIMPLE algorithm drops the second term in the above equation
to leave,

_y Vp(Vp')p
ap
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By substituting the above expression into the continuity equations we obtain the pressure correction equation,

V .,
VL.V =V-a*
ap
In the discretized version of the above equation Vp/ap is approximated at the face by Ardap/(ap)s. In FiPy the
pressure correction equation can be written as,

>>> ap = CellVariable (mesh=mesh, value=1.)
>>> coeff = 1./ ap.arithmeticFaceValuesmesh._faceAreas * mesh._cellDistances
>>> pressureCorrectionEq = DiffusionTerm(coeff=coeff) - velocity.divergence

Above would work good on a staggered grid, however, on a colocated grid as FiPy uses, the term
velocity.divergence will cause oscillations in the pressure solution as velocity is a face variable. We can
apply the Rhie-Chow correction terms for this. In this an intermediate velocity term u° is considered which does not
contain the pressure corrections:

Vp aa
—O —% * %
Uup =Up+ —(V = E —u
P P p (Vp*)p ap A
!
This velocity is interpolated at the edges, after which the pressure correction term is added again, but now considered

at the edge:

L1 14 .
p=s@a - (1) o
ap avg L,R
where (%) LR is assumed a good approximation at the edge. Here L and R denote the two cells adjacent to the
avg L,

face. Expanding the not calculated terms we arrive at

1 1/V \%
iy = 5 (U +R)) + 5 () (VpL + VpR) — () (Vp§)
2 g f 2 ap avg L,R t f ap avg L,R !

where we have replaced the coefficients of the cell pressure gradients by an averaged value over the edge. This formula
has the consequence that the velocity on a face depends not only on the pressure of the adjacent cells, but also on the
cells further away, which removes the unphysical pressure oscillations. We start by introducing needed terms

>>> from fipy.variables.faceGradVariable import _FaceGradVariable
>>> volume = CellVariable (mesh=mesh, value=mesh.cellVolumes, name=’Volume’)
>>> contrvolume=volume.arithmeticFaceValue

And set up the velocity with this formula in the SIMPLE loop. Now, set up the no-slip boundary conditions

>>> xVelocity.constrain (0., mesh.facesRight | mesh.facesLeft | mesh.facesBottom)
>>> xVelocity.constrain (U, mesh.facesTop)

>>> yVelocity.constrain(0., mesh.exteriorFaces)

>>> X, Y = mesh.faceCenters

>>> pressureCorrection.constrain (0., mesh.facesLeft & (Y < dL))

Set up the viewers,

>>> if _ name_ == ’_ main_ ':
viewer = Viewer (vars=(pressure, xVelocity, yVelocity, velocity),
xmin=0., xmax=1., ymin=0., ymax=1., colorbar=True)

Below, we iterate for a set number of sweeps. We use the sweep () method instead of solve () because we
require the residual for output. We also use the cacheMatrix (), getMatrix (), cacheRHSvector () and
getRHSvector () because both the matrix and RHS vector are required by the SIMPLE algorithm. Additionally,
the sweep () method is passed an underRelaxat ion factor to relax the solution. This argument cannot be passed
to solve ().
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>>> for sweep in range (sweeps) :

## solve the Stokes equations to get starred values

xVeloc
xres =

xmat =

yres =

ityEqg.cacheMatrix ()

xVelocityEqg.sweep (var=xVelocity,
underRelaxation=velocityRelaxation)

xVelocityEg.matrix

yVelocityEqg. sweep (var=yVelocity,
underRelaxation=velocityRelaxation)

## update the ap coefficient from the matrix diagonal

apl[:]

= —xmat.takeDiagonal ()

## update the face velocities based on starred values with the

## Rhi
## cel
presgr
## fac
facepr

veloci

e—-Chow correction.
1 pressure gradient
ad = pressure.grad

e pressure gradient
esgrad = _FaceGradVariable (pressure)
ty[0] = xVelocity.arithmeticFaceValue \

+ contrvolume / ap.arithmeticFaceValue x \
(presgrad[0] .arithmeticFaceValue—-facepresgrad[0])

ty[1l] = yVelocity.arithmeticFaceValue \

+ contrvolume / ap.arithmeticFaceValue x \
(presgrad[l] .arithmeticFaceValue—-facepresgrad[l])

ty[..., mesh.exteriorFaces.value] = 0.

veloci

veloci
veloci

ty[0, mesh.facesTop.value]

= U

## solve the pressure correction equation
pressureCorrectionEqg.cacheRHSvector ()

## left bottom point must remain at pressure 0, so no correction
pressureCorrectionEq. sweep (var=pressureCorrection)
pressureCorrectionEq.RHSvector

pres =
rhs =

## update the pressure using

pressu

re.setValue (pressure +

## update the velocity using

xVeloc

yVeloc

if _ n
if

ity.setValue (xVelocity

ity.setValue (yVelocity

ame == '__main__’":
sweep%1l0 == 0:
print ’sweep:’, sweep,

viewer.plot ()

the corrected value

pressureRelaxation * pressureCorrection )
the corrected pressure

- pressureCorrection.grad[0] / \

ap * mesh.cellVolumes)

— pressureCorrection.grad[1l] / \

’

’

’

14

’

ap * mesh.cellVolumes)

x residual:’,xres, \

vy residual’,yres, \

p residual:’,pres, \
continuity:’,max (abs (rhs))
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>>> print numerix.allclose(pressure.globalValue[...,-1],

1
>>> print numerix.allclose (xVelocity.globalValuel.

1
>>> print numerix.allclose(yVelocity.globalValue[.

15.1. examples.flow.stokesCavity
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Reactive Wetting Examples

examples.reactiveWetting.liquidVaporlD Solve a single-component, liquid-vapor, van der Waals system.

16.1 examples.reactiveWetting.liquidVapor1D

Solve a single-component, liquid-vapor, van der Waals system.

This example solves a single-component, liquid-vapor, van der Waals system as described by Wheeler et al. [7]. The
free energy for this system takes the form,

2
f=—q)+RTOn P ) (16.1)

m2  m m—7Tp

where p is the density. This free energy supports a two phase equilibrium with densities given by p' and p* in the
liquid and vapor phases, respectively. The densities are determined by solving the following system of equations,

P(p') = P (p") (16.2)
and
w(p') =n(p) (16.3)
where p is the chemical potential,
of
= - 16.4
"= (16.4)
and P is the pressure,
P=pu—f (16.5)

One choice of thermodynamic parameters that yields a relatively physical two phase system is

>>> molarWeight = 0.118
>>> ee = -0.455971

>>> gasConstant = 8.314
>>> temperature = 650.
>>> vbar = 1.3e-05

with equilibrium density values of
>>> liquidDensity = 7354.3402662299995
>>> vaporDensity = 82.855803327810008

The equilibrium densities are verified by substitution into Eqs. (16.2) and (16.3). Firstly, Egs. (16.1), (16.4) and (16.5)
are defined as python functions,
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>>> from fipy import =«

>>> def f(rho):
return ee % rhox+2 / molarWeight**2 + gasConstant »* temperature » rho / molarWeight » \
numerix.log(rho / (molarWeight - vbar % rho))

>>> def mu(rho) :
return 2  ee % rho / molarWeightx+2 + gasConstant = temperature / molarWeight » \
(numerix.log(rho / (molarWeight - vbar * rho)) + molarWeight / (molarWeight - vbar =

>>> def P (rho):
return rho * mu(rho) - f(rho)

The equilibrium densities values are verified with

>>> print numerix.allclose (mu(liquidDensity), mu(vaporDensity))
True

and

>>> print numerix.allclose (P (liquidDensity), P (vaporDensity))
True

In order to derive governing equations, the free energy functional is defined.
eT
P / {f +5 (ajp)z} av

Using standard dissipation laws, we write the governing equations for mass and momentum conservation,

0
T‘)? +9; (puj) =0 (16.6)
and
9 (pui
% +0; (puiug) = 9 (v [O5ui + dyuy]) — pAip™© (16.7)

where the non-classical potential, V¢, is given by,

oF
NC — 5yl eTd?p (16.8)

As usual, to proceed, we define a mesh

>>> Lx = le-6

>>> nx = 100

>>> dx = Lx / nx

>>> mesh = GridlD (nx=nx, dx=dx)

and the independent variables.

>>> density = CellVariable (mesh=mesh, hasOld=True, name=r’S$\rho$’)
>>> velocity = CellVariable (mesh=mesh, hasOld=True, name=r’S$u$’)
>>> densityPrevious = density.copy()

>>> velocityPrevious = velocity.copy()

The system of equations is solved in a fully coupled manner using a block matrix. Defining V¢ as an independent
variable makes it easier to script the equations without using higher order terms.
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>>> potentialNC = CellVariable (mesh=mesh, name=r’S$\mu”{NC}S$")

>>> epsilon = le-16
>>> freeEnergy = (f(density) + epsilon * temperature / 2 * density.grad.magx=*2).cellVolumeAverage

In order to solve the equations numerically, an interpolation method is used to prevent the velocity and density fields
decoupling. The following velocity correction equation (expressed in discretized form) prevents decoupling from
occuring,
Avdy (———= _
ufy = S5 (000 ~ 5,01, ) (16.9)
f

where Ay is the face area, dy is the distance between the adjacent cell centers and @y is the momentum conservation
equation’s matrix diagonal. The overbar refers to an averaged value between the two adjacent cells to the face. The
notation 0; ¢ refers to a derivative evaluated directly at the face (not averaged). The variable u{ is used to modify the
velocity used in Eq. (16.6) such that,

ap ,

3¢ 05 (pluj +ui]) =0 (16.10)
Equation (16.10) becomes
>>> matrixDiagonal = CellVariable (mesh=mesh, name=r’S$a_f$’, value=1le+20, hasOld=True)

>>> correctionCoeff = mesh._faceAreas * mesh._cellDistances / matrixDiagonal.faceValue
>>> massEqn = TransientTerm(var=density) \
+ VanLeerConvectionTerm(coeff=velocity.faceValue + correctionCoeff \
+ (density * potentialNC.grad).faceValue, \
var=density) \
— DiffusionTerm(coeff=correctionCoeff * density.faceValuexx2, var=potentialNC)

where the first term on the LHS of Eq. (16.9) is calculated in an explicit manner in the VanLeerConvectionTerm
and the second term is calculated implicitly as a Di f fusionTerm with 4z as the independent variable.

In order to write Eq. (16.7) as a FiPy expression, the last term is rewritten such that,
pOpu™Ne = 0; (o) — N 0uip

which results in

>>> viscosity = le-3

>>> ConvectionTerm = CentralDifferenceConvectionTerm

>>> momentumEgqn = TransientTerm(coeff=density, var=velocity) \
+ ConvectionTerm(coeff=[[1]] * density.faceValue * velocity.faceValue, var=velocit:
== DiffusionTerm(coeff=2 x viscosity, var=velocity) \
— ConvectionTerm(coeff=density.facevValue  [[1]], var=potentialNC) \

+ ImplicitSourceTerm(coeff=density.grad[0], var=potentialNC)

The only required boundary condition eliminates flow in or out of the domain.

>>> velocity.constrain(0, mesh.exteriorFaces)

As previously stated, the V¢ variable will be solved implicitly. To do this the Eq. (16.8) is linearized in p such that

a *
pNe =+ (8/;) (p—p*) — €TdFp (16.11)

The * superscript denotes the current held value. In FiPy, g—’; is written as,
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>>> potentialDerivative = 2 % ee / molarWeight++2 + gasConstant % temperature * molarWeight / densit:

and p* is simply,

>>> potential = mu(density)

Eq. (16.11) can be scripted as

>>> potentialNCEgn = ImplicitSourceTerm(coeff=1, var=potentialNC) \
== potential \
+ ImplicitSourceTerm(coeff=potentialDerivative, var=density) \
- potentialDerivative » density \
— DiffusionTerm(coeff=epsilon » temperature, var=density)

Due to a quirk in FiPy, the gradient of ;VC needs to be constrained on the boundary. This is because
ConvectionTerm's will automatically assume a zero flux, which is not what we need in this case.

>>> potentialNC. faceGrad.constrain(value=[0], where=mesh.exteriorFaces)

All three equations are defined and an are combined together with

>>> coupledEgn = massEgn & momentumEqgn & potentialNCEqgn

The system will be solved as a phase separation problem with an initial density close to the average density, but with
some small amplitude noise. Under these circumstances, the final condition should be two separate phases of roughly
equal volume. The initial condition for the density is defined by

>>> numerix.random.seed (2011)
>>> density[:] = (liquidDensity + vaporDensity) / 2 * \
(I + 0.01 * (2 * numerix.random.random (mesh.numberOfCells) - 1))

Viewers are also defined.

>>> if _ name_ == '_ main_ ':
viewers = Viewer (density), Viewer (velocity), Viewer (potentialNC)
for viewer in viewers:
viewer.plot ()
raw_input (' arrange viewers’)
for viewer in viewers:
viewer.plot ()

The following section defines the required control parameters. The cf£1 parameter limits the size of the time step so
thatdt = cfl x* dx / max(velocity).

>>> ¢cfl = 0.1

>>> tolerance = le-1
>>> dt = le-14
>>> timestep = 0
>>> relaxation = 0.5
>>> if _ name_ == '_ main_ ':
totalSteps = 1el0
else:

totalSteps = 10

In the following time stepping scheme a time step is recalculated if the residual increases between sweeps or the
required tolerance is not attained within 20 sweeps. The major quirk in this scheme is the requirement of updat-
ing the matrixDiagonal using the entire coupled matrix. This could be achieved more elegantly by calling
cacheMatrix () only on the necessary part of the equation. This currently doesn’t work properly in FiPy.
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>>> while timestep < totalSteps:

sweep = 0

dt = 1.1

residual = 1.
initialResidual = None

density.updateOld ()
velocity.updateOld()
matrixDiagonal.updateOld ()

while residual > tolerance:

densityPrevious([:] = density
velocityPrevious[:] = velocity
previousResidual = residual

dt = min(dt, dx / max(abs(velocity)) * cfl)

coupledEgn.cacheMatrix ()
residual = coupledEdgn.sweep (dt=dt)

if initialResidual is None:
initialResidual = residual

residual = residual / initialResidual

if residual > previousResidual * 1.1 or sweep > 20:

density[:] = density.old
velocity[:] = velocity.old
matrixDiagonal[:] = matrixDiagonal.old
dt = dt / 10.
if _ name_ == '__ _main_ ’:
print 'Recalculate the time step’
timestep —= 1
break
else:
matrixDiagonal[:] = coupledEgn.matrix.takeDiagonal () [mesh.numberOfCells:2 * mesh.numl
density[:] = relaxation * density + (1 - relaxation) * densityPrevious
velocity[:] = relaxation * velocity + (1 - relaxation) * velocityPrevious

sweep += 1
if _ name__ == '_main__’ and timestep % 10 == 0:
print 'timestep: %i, dt: ¢1.5e, free energy: 2¢l.5e’ % (timestep, dt, freeEnergy)
for viewer in viewers:
viewer.plot ()

timestep += 1

>>> if name == '_main__'":
raw_input ( finished’)

>>> print freeEnergy < 1.5e9
True
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Updating FiPy

examples.updating.update2_0to3_0 How to update scripts from version 2.0 to 3.0.
examples.updating.updatel_0to2_0 How to update scripts from version 1.0 to 2.0.
examples.updating.update0_1tol_0 How to update scripts from version 0.1 to 1.0.

17.1 examples.updating.update2_0to3_0

How to update scripts from version 2.0 to 3.0.

FiPy 3.0 introduces several syntax changes from FiPy 2.0. We appreciate that this is very inconvenient for our users,
but we hope you’ll agree that the new syntax is easier to read and easier to use. We assure you that this is not something
we do casually; it has been over two and a half years since our last incompatible change (when FiPy 2.0 superceded
FiPy 1.0).

All examples included with version 3.0 have been updated to use the new syntax, but any scripts you have written for
FiPy 2.0 will need to be updated. A complete listing of the changes needed to take the FiPy examples scripts from
version 2.0 to version 3.0 can be found at

http://www.matforge.org/fipy/wiki/upgrade2_QOexamplesTo3_0

but we summarize the necessary changes here. If these tips are not sufficient to make your scripts compatible with
FiPy 3.0, please don’t hesitate to ask for help on the mailing list.

The following items must be changed in your scripts

* We have reconsidered the change in FiPy 2.0 that included all of the functions of the nume r i x module in the
fipy namespace. You now must be more explicit when referring to any of these functions:

>>> from fipy import =x
>>> y = numerix.exp (x)

>>> from fipy.tools.numerix import exp
>>> y = exp(x)

We generally use the first, but you may see us import specific functions if we feel it improves readability. You
should feel free to use whichever form you find most comfortable.

Note: the old behavior can be obtained, at least for now, by setting the FIPY_INCLUDE_NUMERIX_ ALL
environment variable.

* If your equation contains a Transient Term, then you must specify the timestep by passing a dt = argument
when calling solve () or sweep ().

The remaining changes are not required, but they make scripts easier to read and we recommend them. FiPy may issue
aDeprecationWarning for some cases, to indicate that we may not maintain the old syntax indefinitely.
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» “getter” and “setter” methods have been replaced with properties, e.g., use

>>> x, y = mesh.cellCenters

instead of
>>> x, y = mesh.getCellCenters()

* Boundary conditions are better applied with the constrain () method than with the old Fixedvalue and
FixedFlux classes. See Boundary Conditions.

e Individual Mesh classes should be imported directly from fipy.meshes and not
fipy.meshes.numMesh.

* The Gmsh meshes now have simplified names: Gmsh2D instead of GmshImporter2D, Gmsh3D instead of
GmshImporter3D, and Gmsh2DIn3DSpace instead of GmshImporter2DIn3DSpace.

17.2 examples.updating.update1_0to2_0

How to update scripts from version 1.0 to 2.0.

FiPy 2.0 introduces several syntax changes from FiPy 1.0. We appreciate that this is very inconvenient for our users,
but we hope you’ll agree that the new syntax is easier to read and easier to use. We assure you that this is not something
we do casually; it has been over three years since our last incompatible change (when FiPy 1.0 superceded FiPy 0.1).

All examples included with version 2.0 have been updated to use the new syntax, but any scripts you have written for
FiPy 1.0 will need to be updated. A complete listing of the changes needed to take the FiPy examples scripts from
version 1.0 to version 2.0 can be found at

http://www.matforge.org/fipy/wiki/upgrade1_OexamplesTo2_0

but we summarize the necessary changes here. If these tips are not sufficient to make your scripts compatible with
FiPy 2.0, please don’t hesitate to ask for help on the mailing list.

The following items must be changed in your scripts

¢ The dimension axis of a Variable is now first, not last

>>> x = mesh.getCellCenters() [0]
instead of
>>> x = mesh.getCellCenters()[...,0]

This seemingly arbitrary change simplifies a great many things in FiPy, but the one most noticeable to the user
is that you can now write

>>> x, y = mesh.getCellCenters()

instead of

>>> x = mesh.getCellCenters()[...,0]

>>> y = mesh.getCellCenters()[...,1]

Unfortunately, we cannot reliably automate this conversion, but we find that searching for “...,” and “:,”

finds almost everything. Please don’t blindly “search & replace all” as that is almost bound to create more
problems than it’s worth.

Note: Any vector constants must be reoriented. For instance, in order to offset a Me sh, you must write
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>>> mesh = Grid2D(...) + ((deltax,), (deltay,))
or

>>> mesh = Grid2D(...) + [[deltax], [deltay]]
instead of

>>> mesh = Grid2D(...) + (deltax, deltay)

e VectorCellVariable and VectorFaceVariable no longer exist. CellVariable and and
FaceVariable now both inherit from MeshVariable, which can have arbitrary rank. A field of scalars
(default) will have rank=0, a field of vectors will have rank=1, etc. You should write

>>> vectorField = CellVariable (mesh=mesh, rank=1)

instead of

>>> vectorField = VectorCellVariable (mesh=mesh)

Note: Because vector fields are properly supported, use vector operations to manipulate them, such as

>>> phase.getFaceGrad() .dot ((( 0, 1),
(=1, 0)))

instead of the hackish

>>> phase.getFaceGrad() ._take((1, 0), axis=1l) = (-1, 1)

* For internal reasons, FiPy now supports Cel1Variable and FaceVariable objects that contain integers,
but it is not meaningful to solve a PDE for an integer field (FiPy should issue a warning if you try). As a result,
when given, initial values must be specified as floating-point values:

>>> var = CellVariable (mesh=mesh, value=1.)

where they used to be quietly accepted as integers

>>> var = CellVariable (mesh=mesh, wvalue=1)

If the value argument is not supplied, the Cel11Variable will contain floats, as before.

e The faces argument to BoundaryCondition now takes a mask, instead of a list of Face IDs. Now you
write

>>> X, Y = mesh.getFaaceCenters()
>>> FixedValue (faces=mesh.getExteriorFaces () & (X**2 < le-6), value=...)

instead of

>>> exteriorFaces = mesh.getExteriorFaces()
>>> X = exteriorFaces.getCenters()[...,0]
>>> FixedValue (faces=exteriorFaces.where (X+«+2 < le-6), value=...)

With the old syntax, a different call to getCenters () had to be made for each set of Face objects. It was also
extremely difficult to specify boundary conditions that depended both on position in space and on the current
values of any other Variable.

>>> FixedValue (faces=(mesh.getExteriorFaces ()
& (((Xx%2 < 1le—06)
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& (Y > 3.))
| (phi.getArithmeticFaceValue ()
< sin(gamma.getArithmeticFaceValue())))), value=...)

although it probably could have been done with a rather convoluted (and slow!) filter function passed to
where. There no longer are any £ilter methods used in FiPy. You now would write

>>> x, y = mesh.cellCenters
>>> initialArray[(x < dx) | (x > (Lx — dx)) | (y < dy) | (y > (Ly — dy))] = 1.

instead of the much slower

>>> def cellFilter(cell):
return ((cell.center[0] < dx)
or (cell.center[0] > (Lx - dx))
or (cell.center[l] < dy)
or (cell.center([l] > (Ly — dy)))

>>> positiveCells = mesh.getCells(filter=cellFilter)
>>> for cell in positiveCells:
initialArray[cell.ID] = 1.

Although they still exist, we find very little cause to ever call getCells() or
fipy.meshes.mesh.Mesh.getFaces().

Some modules, such as fipy.solvers, have been significantly rearranged. For example, you need to change

>>> from fipy.solvers.linearPCGSolver import LinearPCGSolver

to either

>>> from fipy import LinearPCGSolver

or

>>> from fipy.solvers.pysparse.linearPCGSolver import LinearPCGSolver

The numerix.max () and numerix.min () functions no longer exist. Either call max () and min () or
the max () and min () methods of a Variable.

The Numeric module has not been supported for a long time. Be sure to use

>>> from fipy import numerix

instead of

>>> import Numeric

The remaining changes are not required, but they make scripts easier to read and we recommend them. FiPy may issue
aDeprecationWarning for some cases, to indicate that we may not maintain the old syntax indefinitely.

e All of the most commonly used classes and functions in FiPy are directly accessible in the £ipy namespace.

For brevity, our examples now start with

>>> from fipy import =

instead of the explicit

>>> from fipy.meshes.gridlD import GridlD
>>> from fipy.terms.powerLawConvectionTerm import PowerLawConvectionTerm
>>> from fipy.variables.cellVariable import CellVariable
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imports that we used to use. Most of the explicit imports should continue to work, so you do not need to change
them if you don’t wish to, but we find our own scripts much easier to read without them.

All of the nume rix module is now imported into the £1ipy namespace, so you can call numerix functions a
number of different ways, including:

>>> from fipy import =«
>>> y = exp(x)

or

>>> from fipy import numerix
>>> y = numerix.exp (x)

or

>>> from fipy.tools.numerix import exp
>>> y = exp(x)

We generally use the first, but you may see us use the others, and should feel free to use whichever form you
find most comfortable.

Note: Internally, FiPy uses explicit imports, as is considered best Python practice, but we feel that clarity
trumps orthodoxy when it comes to the examples.

¢ The function fipy.viewers.make () has been renamed to fipy.viewers.Viewer (). All of the
limits can now be supplied as direct arguments, as well (although this is not required). The result is a
more natural syntax:

>>> from fipy import Viewer
>>> viewer = Viewer (vars=(alpha, beta, gamma), datamin=0, datamax=1)

instead of

>>> from fipy import viewers
>>> viewer = viewers.make (vars=(alpha, beta, gamma),
limits={’datamin’: 0, ’'datamax’: 1})

With the old syntax, there was also a temptation to write

>>> from fipy.viewers import make
>>> viewer = make (vars=(alpha, beta, gamma))

which can be very hard to understand after the fact (make? make what?).

* A ConvectionTerm can now calculate its Peclet number automatically, so the di ffusionTerm argument
is no longer required

>>> eq = (TransientTerm()
== DiffusionTerm(coeff=diffCoeff)
+ PowerLawConvectionTerm (coeff=convCoeff))

instead of

>>> diffTerm = DiffusionTerm(coeff=diffCoeff)
>>> eq = (TransientTerm()
== diffTerm
+ PowerLawConvectionTerm (coeff=convCoeff, diffusionTerm=diffTerm))

* An ImplicitSourceTermnow “knows” how to partion itself onto the solution matrix, so you can write
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>>> S0 = mXi * phase » (1 - phase) - phase * Sl

>>> source = S0 + ImplicitSourceTerm(coeff=S51)

instead of

>>> S0 = mXi x phase * (1 - phase) - phase » S1 » (S1 < 0)
>>> source = SO0 + ImplicitSourceTerm(coeff=S1 *« (S1 < 0))

It is definitely still advantageous to hand-linearize your source terms, but it is no longer necessary to worry about
putting the “wrong” sign on the diagonal of the matrix.

» To make clearer the distinction between iterations, timesteps, and sweeps (see FAQ Iterations, timesteps, and
sweeps? Oh, my!) the steps argument to a Solver object has been renamed iterations.

e TmplicitDiffusionTerm hasbeenrenamedtoDiffusionTerm.

17.3 examples.updating.update0_1to1_0

How to update scripts from version 0.1 to 1.0.

It seems unlikely that many users are still running FiPy 0.1, but for those that are, the syntax of FiPy scripts changed
considerably between version 0.1 and version 1.0. We incremented the full version-number to stress that previous
scripts are incompatible. We strongly believe that these changes are for the better, resulting in easier code to write and
read as well as slightly improved efficiency, but we realize that this represents an inconvenience to our users that have
already written scripts of their own. We will strive to avoid any such incompatible changes in the future.

Any scripts you have written for FiPy 0.1 should be updated in two steps, first to work with FiPy
1.0, and then with FiPy 2.0. As a tutorial for updating your scripts, we will walk through updating
examples/convection/exponentiallD/input.py from FiPy 0.1. If you attempt to run that script with
FiPy 1.0, the script will fail and you will see the errors shown below:

This example solves the steady-state convection-diffusion equation given by:
V.- (DV¢+ip) =0

with coefficients D = 1 and @ = (10, 0), or

>>> diffCoeff
>>> convCoeff = (10.,0.)

I
=

We define a 1D mesh

>>> L = 10.

>>> nx = 1000

>>> ny = 1

>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(L / nx, L / ny, nx, ny)

and impose the boundary conditions

0 atx =0,
¢_{1 atx = L,

or
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>>> valueLeft = 0.

>>> valueRight = 1.

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> pboundaryConditions = (

FixedValue (mesh.getFacesLeft (), valueleft),
FixedValue (mesh.getFacesRight (), valueRight),
FixedFlux (mesh.getFacesTop (), 0.)

14
FixedFlux (mesh.getFacesBottom(), 0.)
)

The solution variable is initialized to valueLeft:

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable (

name = "concentration",

mesh = mesh,

value = valueleft)

The SteadyConvectionDiffusionScEquation object is used to create the equation. It needs to be passed a
convection term instantiator as follows:

>>> from fipy.terms.exponentialConvectionTerm import ExponentialConvectionTerm

>>> from fipy.solvers import x

>>> from fipy.equations.stdyConvDiffScEquation import SteadyConvectionDiffusionScEquation
Traceback (most recent call last):

ImportError: No module named equations.stdyConvDiffScEquation

>>> eq = SteadyConvectionDiffusionScEquation (
var = var,
diffusionCoeff = diffCoeff,
convectionCoeff = convCoeff,
solver = LinearLUSolver (tolerance = 1l.e-15, steps = 2000),
convectionScheme = ExponentialConvectionTerm,
boundaryConditions = boundaryConditions

)

Traceback (most recent call last):
NameError: name ’SteadyConvectionDiffusionScEquation’ is not defined

More details of the benefits and drawbacks of each type of convection term can be found in the numerical section
of the manual. Essentially the ExponentialConvectionTerm and PowerLawConvectionTerm will both
handle most types of convection diffusion cases with the PowerLawConvectionTerm being more efficient.

We iterate to equilibrium

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eq,))
Traceback (most recent call last):

NameError: name ’'eq’ is not defined
>>> it.timestep ()
Traceback (most recent call last):

NameError: name ’'it’ is not defined

and test the solution against the analytical result

1 — exp(—ugzx/D)
1 —exp(—u,L/D)

o=
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or

>>> axis = 0

>>> x = mesh.getCellCenters () [:,axis]

>>> from fipy.tools import numerix

>>> CC = 1. - numerix.exp (-convCoefflaxis] » x / diffCoeff)

>>> DD = 1. - numerix.exp(-convCoeff[axis] x L / diffCoeff)

>>> analyticalArray = CC / DD

>>> numerix.allclose(analyticalArray, var, rtol = 1le-10, atol = 1le-10)
0

If the problem is run interactively, we can view the result:

’

>>> if  name == '_ _main__ ’:
from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
Traceback (most recent call last):

ImportError: No module named grid2DGistViewer

viewer = Grid2DGistViewer (var)
viewer.plot ()

We see that a number of errors are thrown:
e ITmportError: No module named equations.stdyConvDiffScEquation
* NameError: name ’SteadyConvectionDiffusionScEquation’ is not defined
* NameError: name ’'eq’ is not defined
* NameError: name ’'it’ is not defined
¢ TmportError: No module named grid2DGistViewer

As is usually the case with computer programming, many of these errors are caused by earlier errors. Let us update
the script, section by section:

Although no error was generated by the use of Grid2D, FiPy 1.0 supports a true 1D mesh class, so we instantiate the
mesh as

>>> L = 10.

>>> nx = 1000
>>> from fipy.meshes.gridlD import GridlD
>>> mesh = GridlD(dx = L / nxX, nx = nx)

The Grid2D class with ny = I still works perfectly well for 1D problems, but the Grid1D class is slightly more
efficient, and it makes the code clearer when a 1D geometry is actually desired.

Because the mesh is now 1D, we must update the convection coefficient vector to be 1D as well

>>> diffCoeff
>>> convCoeff

1.
(10.,)

The FixedValue boundary conditions at the left and right are unchanged, but a GridID mesh does not even have
top and bottom faces:

>>> valueleft = 0.
>>> valueRight = 1.
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> boundaryConditions = (
FixedValue (mesh.getFacesLeft (), valueleft),
FixedValue (mesh.getFacesRight (), valueRight))
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The creation of the solution variable is unchanged:

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable (name = "concentration",

mesh = mesh,

value = valueleft)

The biggest change between FiPy 0.1 and FiPy 1.0 is that Equat ion objects no longer exist at all. Instead, Te rm ob-
jects can be simply added, subtracted, and equated to assemble an equation. Where before the assembly of the equation
occurred in the black-box of SteadyConvectionDiffusionScEquation, we now assemble it directly:

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> diffTerm = ImplicitDiffusionTerm(coeff = diffCoeff)

>>> from fipy.terms.exponentialConvectionTerm import ExponentialConvectionTerm
>>> eq = diffTerm + ExponentialConvectionTerm(coeff = convCoeff,
diffusionTerm = diffTerm)

One thing that SteadyConvectionDiffusionScEquation took care of automatically was that a
ConvectionTerm must know about any DiffusionTerm in the equation in order to calculate a Peclet number.
Now, the Di f fusionTerm must be explicitly passed to the ConvectionTerm in the diffusionTerm parameter.

The Iterator class still exists, but it is no longer necessary. Instead, the solution to an implicit steady-state problem
like this can simply be obtained by telling the equation to solve itself (with an appropriate solver if desired, although
the default LinearPCGSolver is usually suitable):

>>> from fipy.solvers import x

>>> eq.solve(var = var,
solver = LinearLUSolver (tolerance = 1l.e-15, steps = 2000),
boundaryConditions = boundaryConditions)

Note: In version 0.1, the Equation object had to be told about the Variable, Solver, and
BoundaryCondition objects when it was created (and it, in turn, passed much of this information to the Term

objects in order to create them). In version 1.0, the Term objects (and the equation assembled from them) are abstract.
The Variable, Solver, and BoundaryCondition objects are only needed by the solve () method (and, in
fact, the same equation could be used to solve different variables, with different solvers, subject to different boundary
conditions, if desired).

The analytical solution is unchanged, and we can test as before

>>> numerix.allclose (analyticalArray, var, rtol = 1le-10, atol = 1le-10)
1

or we can use the slightly simpler syntax

>>> print var.allclose(analyticalArray, rtol = le-10, atol = 1le-10)
1

The ImportError: No module named grid2DGistViewer results because the Viewer classes have
been moved and renamed. This error could be resolved by changing the import statement appropriately:

>>> if _ name_ == ’_ _main__ ':
from fipy.viewers.gistViewer.gistlDViewer import GistlDViewer
viewer = GistlDViewer (vars = var)

viewer.plot ()

Instead, rather than instantiating a particular Viewer (which you can still do, if you desire), a generic “factory”
method will return a Viewer appropriate for the supplied Variable object(s):
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>>> if name == '_main__ ':
import fipy.viewers
viewer = fipy.viewers.make (vars = var)

viewer.plot ()

Please do not hesitate to contact us if this example does not help you convert your existing scripts to FiPy 1.0.
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How to Read the Modules Documentation

Each chapter describes one of the main sub-packages of the fipy package. The sub-package fipy.package
can be found in the directory fipy/package/. In a few cases, there will be packages within packages, e.g.
fipy.package.subpackage located in fipy/package/subpackage/. These sub-sub-packages will not
be given their own chapters; rather, their contents will be described in the chapter for their containing package.

18.1 subpackage Package

18.1.1 subpackage Package

Each chapter describes one of the main sub-packages of the fipy package. The sub-package fipy.package
can be found in the directory fipy/package/. In a few cases, there will be packages within packages, e.g.
fipy.package.subpackage located in fipy/package/subpackage/. These sub-sub-packages will not
be given their own chapters; rather, their contents will be described in the chapter for their containing package.

18.1.2 base Module
This module can be found in the file package/subpackage/base.py. You make it available to your script by
either:

import package.subpackage.base

in which case you refer to it by its full name of package . subpackage.base, or:

from package.subpackage import base

in which case you can refer simply to base.

class package.subpackage.base.Base
With very few exceptions, the name of a class will be the capitalized form of the module it resides in. Depending
on how you imported the module above, you will refer to either package . subpackage.object .Object
or object .Object. Alternatively, you can use:

from package.subpackage.object import Object

and then refer simply to Ob ject. For many classes, there is a shorthand notation:

from fipy import Object

Python is an object-oriented language and the FiPy framework is composed of objects or classes. Knowledge of
object-oriented programming (OOP) is not necessary to use either Python or FiPy, but a few concepts are useful.
OOP involves two main ideas:
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encapsulation an object binds data with actions or “methods”. In most cases, you will not work with an
object’s data directly; instead, you will set, retrieve, or manipulate the data using the object’s methods.

Methods are functions that are attached to objects and that have direct access to the data of those objects.
Rather than passing the object data as an argument to a function:

fn(data, argl, arg2, ...)

you instruct an object to invoke an appropriate method:

object.meth (argl, arg2, ...)

If you are unfamiliar with object-oriented practices, there probably seems little advantage in this reorder-
ing. You will have to trust us that the latter is a much more powerful way to do things.

inheritance specialized objects are derived or inherited from more general objects. Common behaviors or data
are defined in base objects and specific behaviors or data are either added or modified in derived objects.
Objects that declare the existence of certain methods, without actually defining what those methods do,
are called “abstract”. These objects exist to define the behavior of a family of objects, but rely on their
descendants to actually provide that behavior.

Unlike many object-oriented languages, Python does not prevent the creation of abstract objects, but we
will include a notice like

Attention: This class is abstract. Always create one of its subclasses.

for abstract classes which should be used for documentation but never actually created in a FiPy script.

methodl ()
This is one thing that you can instruct any object that derives from Base to do, by calling
myObjectDerivedFromBase.methodl ()

Parameters

* self: this special argument refers to the object that is being created.

Attention: self is supplied automatically by the Python interpreter to all methods.
You don’t need to (and should not) specify it yourself.

method2 ()
This is another thing that you can instruct any object that derives from Base to do.

18.1.3 object Module
class package.subpackage.object .Object (argl, arg2=None, arg3="string’)
Bases: package.subpackage.base.Base

This method, like all those whose names begin and end with “__” are special. You won’t ever need to call these
methods directly, but Python will invoke them for you under certain circumstances, which are described in the
Python Reference Manual: Special Method Names.

As an example, the __init__ () method is invoked when you create an object, as in:

obj = Object (argl=something, arg3=somethingElse, ...)

Parameters
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* argl: this argument is required. Python supports named arguments, so you must either list
the value for argl first:

obj = Object (vall, val2)
or you can specify the arguments in any order, as long as they are named:
obj = Object (arg2=val2, argl=vall)

* arg2: this argument may be omitted, in which case it will be assigned a default value of
None. If you do not use named arguments (and we recommend that you do), all required
arguments must be specified before any optional arguments.

* arg3: this argument may be omitted, in which case it will be assigned a default value of
"string’.

method2 ()
Ob ject provides a new definition for the behavior of method?2 (), whereas the behavior of met hod1 ()
is defined by Base.
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boundaryConditions Package

19.1 boundaryConditions Package

class

class

class

class

fipy.boundaryConditions.Constraint (value, where=None)
Bases: object

Object to hold a Variable to value at where
see constrain ()

fipy.boundaryConditions.FixedFlux (faces, value)
Bases: fipy.boundaryConditions.boundaryCondition.BoundaryCondition

The FixedFlux boundary condition adds a contribution, equivalent to a fixed flux (Neumann condition), to the
equation’s RHS vector. The contribution, given by value, is only added to entries corresponding to the specified
faces, and is weighted by the face areas.

Creates a FixedFlux object.
Parameters
* faces: A list or tuple of Face objects to which this condition applies.
* value: The value to impose.

fipy.boundaryConditions.FixedValue (faces, value)
Bases: fipy.boundaryConditions.boundaryCondition.BoundaryCondition

The FixedValue boundary condition adds a contribution, equivalent to a fixed value (Dirichlet condition), to the
equation’s RHS vector and coefficient matrix. The contributions are given by —value X Gy for the RHS
vector and Gy, for the coefficient matrix. The parameter Gy, represents the term’s geometric coefficient,
which depends on the type of term and the mesh geometry.

Contributions are only added to entries corresponding to the specified faces.
Parameters
* faces: A list or tuple of exterior Face objects to which this condition applies.
* value: The value to impose.

fipy.boundaryConditions.NthOrderBoundaryCondition (faces, value, order)
Bases: fipy.boundaryConditions.boundaryCondition.BoundaryCondition

This boundary condition is generally used in conjunction with a ImplicitDiffusionTerm that has multiple coeffi-
cients. It does not have any direct effect on the solution matrices, but its derivatives do.

Creates an NthOrderBoundaryCondition.

Parameters
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* faces: A list or tuple of Face objects to which this condition applies.
* value: The value to impose.

* order: The order of the boundary condition. An order of 0 corresponds to a FixedValue and
an order of I corresponds to a FixedFlux. Even and odd orders behave like FixedValue and
FixedFlux objects, respectively, but apply to higher order terms.

19.2 boundaryCondition Module

class fipy.boundaryConditions.boundaryCondition.BoundaryCondition (faces, value)

Bases: object

Generic boundary condition base class.

Attention: This class is abstract. Always create one of its subclasses.

Parameters
* faces: A list or tuple of exterior Face objects to which this condition applies.

* value: The value to impose.

19.3 constraint Module

class fipy.boundaryConditions.constraint.Constraint (value, where=None)

Bases: object
Object to hold a Variable to value at where

see constrain ()

19.4 fixedFlux Module

class fipy.boundaryConditions. fixedFlux.FixedF1lux (faces, value)

Bases: fipy.boundaryConditions.boundaryCondition.BoundaryCondition

The FixedFlux boundary condition adds a contribution, equivalent to a fixed flux (Neumann condition), to the
equation’s RHS vector. The contribution, given by value, is only added to entries corresponding to the specified
faces, and is weighted by the face areas.

Creates a FixedFlux object.
Parameters
* faces: A list or tuple of Face objects to which this condition applies.

* value: The value to impose.

19.5 fixedVvalue Module

class fipy.boundaryConditions.fixedValue.FixedValue (faces, value)

Bases: fipy.boundaryConditions.boundaryCondition.BoundaryCondition
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The FixedValue boundary condition adds a contribution, equivalent to a fixed value (Dirichlet condition), to the
equation’s RHS vector and coefficient matrix. The contributions are given by —value X Gy for the RHS
vector and Gy for the coefficient matrix. The parameter Gy, represents the term’s geometric coefficient,
which depends on the type of term and the mesh geometry.

Contributions are only added to entries corresponding to the specified faces.
Parameters
* faces: A list or tuple of exterior Face objects to which this condition applies.

* value: The value to impose.

19.6 nthOrderBoundaryCondition Module

class fipy.boundaryConditions.nthOrderBoundaryCondition.NthOrderBoundaryCondition (faces,
value,
or-

der)
Bases: fipy.boundaryConditions.boundaryCondition.BoundaryCondition

This boundary condition is generally used in conjunction with a ImplicitDiffusionTerm that has multiple coeffi-
cients. It does not have any direct effect on the solution matrices, but its derivatives do.

Creates an NthOrderBoundaryCondition.
Parameters
* faces: A list or tuple of Face objects to which this condition applies.
* value: The value to impose.

* order: The order of the boundary condition. An order of 0 corresponds to a FixedValue and
an order of I corresponds to a FixedFlux. Even and odd orders behave like FixedValue and
FixedFlux objects, respectively, but apply to higher order terms.

19.7 test Module

Test numeric implementation of the mesh
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matrices Package

20.1 offsetSparseMatrix Module

fipy.matrices.offsetSparseMatrix.OffsetSparseMatrix (SparseMatrix,  numberOfVari-

ables, numberOfEquations)
Used in binary terms. equationIndex and varIndex need to be set statically before instantiation.

20.2 pysparseMatrix Module
20.3 scipyMatrix Module
20.4 sparseMatrix Module
20.5 test Module

20.6 trilinosMatrix Module
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o 21

meshes Package

21.1 meshes Package

fipy.meshes.Grid3D (dx=1.0, dy=1.0, dz=1.0, nx=None, ny=None, nz=None, Lx=None, Ly=None,
Lz=None, overlap=2, communicator=DummyComm())
Factory function to select between UniformGrid3D and NonUniformGrid3D. If Lx is specified the length of the

domain is always Lx regardless of dx.
Parameters

* dx: grid spacing in the horizontal direction
* dy: grid spacing in the vertical direction
* dz: grid spacing in the z-direction
 nx: number of cells in the horizontal direction
* ny: number of cells in the vertical direction
* nz: number of cells in the z-direction
e Lx: the domain length in the horizontal direction
* Ly: the domain length in the vertical direction
* Lz: the domain length in the z-direction

* overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.

e communicator:  either fipy.tools.parallelComm or fipy.tools.serial Comm. Select
fipy.tools.serial Comm to create a serial mesh when running in parallel. Mostly used for
test purposes.

fipy.meshes.Grid2D (dx=1.0, dy=1.0, nx=None, ny=None, Lx=None, Ly=None, overlap=2, communi-
cator=DummyComm())
Factory function to select between UniformGrid2D and NonUniformGrid2D. If Lx is specified the length of the

domain is always Lx regardless of dx.
Parameters
* dx: grid spacing in the horizontal direction
* dy: grid spacing in the vertical direction
* nx: number of cells in the horizontal direction
* ny: number of cells in the vertical direction

* Lx: the domain length in the horizontal direction
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* Ly: the domain length in the vertical direction

* overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.

* communicator:  either fipy.tools.parallelComm or fipy.tools.serial Comm. Select
fipy.tools.serialComm to create a serial mesh when running in parallel. Mostly used for
test purposes.

>>> print Grid2D (Lx=3., nx=2) .dx
1.5

fipy.meshes.GridlD (dx=1.0, nx=None, Lx=None, overlap=2, communicator=DummyComm())
Factory function to select between UniformGrid1D and NonUniformGrid1D. If Lx is specified the length of the
domain is always Lx regardless of dx.

Parameters
* dx: grid spacing in the horizonal direction
e nx: number of cells in the horizonal direction
* Lx: the domain length in the horizonal direction

* overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.

* communicator:  either fipy.tools.parallelComm or fipy.tools.serial Comm. Select
fipy.tools.serial Comm to create a serial mesh when running in parallel. Mostly used for
test purposes.

fipy.meshes.CylindricalGrid2D (dr=None, dz=None, nr=None, nz=None, Lr=None, Lz=None,
dx=1.0, dy=1.0, nx=None, ny=None, Lx=None, Ly=None, ori-
gin=((0, ), (0, )), overlap=2, communicator=DummyComm())
Factory function to select between CylindricalUniformGrid2D and CylindricalNonUniformGrid2D. If Lx is

specified the length of the domain is always Lx regardless of dx.
Parameters
* dr or dx: grid spacing in the radial direction
* dz or dy: grid spacing in the vertical direction
* nr or nx: number of cells in the radial direction
* nz or ny: number of cells in the vertical direction
e Lr or Lx: the domain length in the radial direction
* Lz or Ly: the domain length in the vertical direction
* origin : position of the mesh’s origin in the form ((x,),(y,))

* overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.

* communicator:  either fipy.tools.parallelComm or fipy.tools.serial Comm. Select
fipy.tools.serial Comm to create a serial mesh when running in parallel. Mostly used for
test purposes.

fipy.meshes.CylindricalGridlD (dr=None, nr=None, Lr=None, dx=1.0, nx=None, Lx=None, ori-

gin=(0, ), overlap=2, communicator=DummnyComm())
Factory function to select between CylindricalUniformGrid1D and CylindricalNonUniformGrid1D. If Lx is

specified the length of the domain is always Lx regardless of dx.

Parameters
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* dr or dx: grid spacing in the radial direction

* nr or nx: number of cells in the radial direction

e Lror Lx: the domain length in the radial direction

* origin : position of the mesh’s origin in the form (x,)

* overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.

* communicator:  either fipy.tools.parallelComm or fipy.tools.serial Comm. Select
fipy.tools.serial Comm to create a serial mesh when running in parallel. Mostly used for
test purposes.

class fipy.meshes.PeriodicGridlD (dx=1.0, nx=None, overlap=2, *args, **kwargs)
Bases: fipy.meshes.nonUniformGridlD.NonUniformGridlD

Creates a Periodic grid mesh.

>>> mesh = PeriodicGridlD(dx = (1, 2, 3))

>>> print numerix.allclose (numerix.nonzero (mesh.exteriorFaces) [0],
c [31)

True
>>> print numerix.allclose (mesh.faceCellIDs.filled(-999),
[tz, o, 1, 21,

ce [0, 1, 2, -99911)

True
>>> print numerix.allclose (mesh._cellDistances,
C [ 2., 1.5, 2.5, 1.51)
True
>>> print numerix.allclose (mesh._cellToCellDistances,
[rz., 1.5, 2.57,

C [ 1.5, 2.5, 2.11)

True
>>> print numerix.allclose (mesh.faceNormals,

r(r ., 1., 1., 1.11)
True

>>> print numerix.allclose (mesh._cellVertexIDs,
(L, 2, 21,
[0, 1, 011

True

cellCenters
Defined outside of a geometry class since we need the CellVariable version of cellCenters; that is, the
cellCenters defined in fipy.meshes.mesh and not in any geometry (since a CellVariable requires a reference
to a mesh).

class fipy.meshes.PeriodicGrid2D (dx=1.0, dy=1.0, nx=None, ny=None, overlap=2, communica-

tor=DummyComm(), *args, **kwargs)
Bases: fipy.meshes.periodicGrid2D._BasePeriodicGrid2D

Creates a periodic2D grid mesh with horizontal faces numbered first and then vertical faces. Vertices and cells
are numbered in the usual way.

21.1. meshes Package 205



FiPy Manual, Release 3.1

>>> from fipy import numerix
>>> mesh = PeriodicGrid2D(dx = 1., dy = 0.5, nx = 2, ny = 2)

>>> print numerix.allclose (numerix.nonzero (mesh.exteriorFaces) [0],
C [ 4, 5, 8, 111)

True
>>> print numerix.allclose (mesh.faceCellIDs.filled(-1)

(2, 3, 0, 1, 2, 3, 1, o, 1, 3, 2, 31,

c ro, 1, 2, 3, -1, -1, o, 1, -1, 2, 3, -111)
True

>>> print numerix.allclose (mesh._cellDistances,

[ 0.5 0.5, 0.5 0.5, 0.25, 0.25, 1., 1., 0.5, 1., 1., O.

True

>>> print numerix.allclose (mesh.cellFacelIDs,
rro, 1, 2, 31,
[7, 6, 10, 91,
[2, 3, 0, 11,

(e, 7, 9, 1011)

True

>>> print numerix.allclose (mesh._cellToCellDistances,
[[ 0.5, 0.5, 0.5, 0.5],

r1., 1., 1., 1.1,

[ 0.5, 0.5, 0.5, 0.57,

[ 1., 1., 1., 1.1
True
>>> normals = [[O, O, O, O, O, O, 1, 1, 1, 1, 1, 11,

t, 1, 1, 1, 1, 1, 0, 0, 0, O, O, O]]

>>> print numerix.allclose (mesh.faceNormals, normals)
True

>>> print numerix.allclose (mesh._cellVertexIDs,
re4, s, 7, 81,

w
~
BN o |
<

~

~
w o
~
SOl

True

class fipy.meshes.PeriodicGrid2DLeftRight (dx=1.0, dy=1.0, nx=None, ny=None, overlap=2,

communicator=DummyCommy(), *args, **kwargs)
Bases: fipy.meshes.periodicGrid2D._BasePeriodicGrid2D

class fipy.meshes.PeriodicGrid2DTopBottom (dx=1.0, dy=1.0, nx=None, ny=None, overlap=2,

communicator=DummyComm(), *args, **kwargs)
Bases: fipy.meshes.periodicGrid2D._BasePeriodicGrid2D

class fipy.meshes.SkewedGrid2D (dx=1.0, dy=1.0, nx=None, ny=1, rand=0, *args, **kwargs)

Bases: fipy.meshes.mesh2D.Mesh2D

Creates a 2D grid mesh with horizontal faces numbered first and then vertical faces. The points are skewed by
a random amount (between rand and -rand) in the X and Y directions.

physicalShape
Return physical dimensions of Grid2D.
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shape

class fipy.meshes.Tri2D (dx=1.0, dy=1.0, nx=1, ny=1, _RepresentationClass=<class
‘fipy.meshes.representations.gridRepresentation._Grid2DRepresentation’>,

_TopologyClass=<class ‘fipy.meshes.topologies.meshTopology._Mesh2DTopology’>)
Bases: fipy.meshes.mesh2D.Mesh2D

This class creates a mesh made out of triangles. It does this by starting with a standard Cartesian mesh (Grid2D)
and dividing each cell in that mesh (hereafter referred to as a ‘box’) into four equal parts with the dividing lines
being the diagonals.

Creates a 2D triangular mesh with horizontal faces numbered first then vertical faces, then diagonal faces.
Vertices are numbered starting with the vertices at the corners of boxes and then the vertices at the centers of
boxes. Cells on the right of boxes are numbered first, then cells on the top of boxes, then cells on the left of
boxes, then cells on the bottom of boxes. Within each of the ‘sub-categories’ in the above, the vertices, cells and
faces are numbered in the usual way.

Parameters

* dx, dy: The X and Y dimensions of each ‘box’. If dx <> dy, the line segments connecting
the cell centers will not be orthogonal to the faces.

* nx, ny: The number of boxes in the X direction and the Y direction. The total number of
boxes will be equal to nx * ny, and the total number of cells will be equal to 4 * nx * ny.

physicalShape
Return physical dimensions of Grid2D.
shape
fipy.meshes.openMSHFile (name, dimensions=None, coordDimensions=None, communica-
tor=DummyComm( ), order=1, mode="r’, background=None)
Open a Gmsh MSH file
Parameters

* filename: a string indicating gmsh output file

* dimensions: an integer indicating dimension of mesh

* coordDimensions: an integer indicating dimension of shapes
* order: 11?

* mode: a string beginning with ‘r’ for reading and ‘w’ for writing. The file will be created if
it doesn’t exist when opened for writing; it will be truncated when opened for writing. Add
a ‘b’ to the mode for binary files.

* background: a CellVariable that specifies the desired characteristic lengths of the mesh cells

fipy.meshes.openPOSFile (name, communicator=DummyComm(), mode="w’)
Open a Gmsh POS post-processing file

class fipy.meshes.Gmsh2D (arg, coordDimensions=2, communicator=DummyComm(), order=1, back-

ground=None)
Bases: fipy.meshes.mesh2D.Mesh2D

Construct a 2D Mesh using Gmsh

>>> radius = 5.
>>> side = 4.
>>> squaredCircle = Gmsh2D ('’
// A mesh consisting of a square inside a circle inside a circle

// define the basic dimensions of the mesh
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cellSize
radius =

side = % (side)g;

// define the compass points of the inner circle

Point (1)
Point (2
Point (3
Point (4

5

)
)
)
Point (5)

// define the compass points of the outer circle

Point (6
Point (7
Point (8
Point (9

// define the corners of the square

Point (10)
Point (11)
Point (12)
Point (13)

// define the inner circle

Circle
Circle
Circle
Circle

(1)
(2)
(3)
(4)

// define the outer circle

Circle
Circle
Circle

5
6
7
Circle (8

(5)
(6)
(7)
(8)

1;

% (radius)g;

{0,

0,

0,

{-radius, 0,

{0,

{radius,

{0,

radius,

0,

-radius,

{-2*radius,

{Ol

{2+radius,

{0,

{side/2, side/2,
= {-side/2, side/2,
= {-side/2, -side/2,
= {side/2, -side/2,

{2,
= {3,
= {4,
{5,

{6,
= {7,
= {8,
= {9,

e e

~

o e e

~

~

~

~

~

~

~

3};
4};
5};
2};

T};
8}
9};
6};

// define the square

// define the three boundaries

{10,
{13,
{12,
{11,

Line Loop (1)

Line Loop(2)
Line Loop (3)

// define the three domains
Plane Surface (1)

Plane Surface(2)
Plane Surface (3)

13};

12};
11};
10};

{1,
{5,
{9I

cellSize};
cellSize};

cellSize};

cellSize};
cellSize};

0,

0,
0

’
0,

Or
2+xradius,
OI
-2+radius,

2, 3,
6! 7[
10, 11,

{2,
{1,
{3};

1};
3};

cellSize};
cellSize};
cellSize};

cellSize};

0,
0

cellSize/2};

cellSize/2};
cellSize/2};

cellSize/2};

4};
8};
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// label the three domains

// attention: if you use any "Physical" labels, you smustx label

// all elements that correspond to FiPy Cells (Physical Surace in 2D
// and Physical Volume in 3D) or Gmsh will not include them and FiPy
// will not be able to include them in the Mesh.

// note: if you do not use any labels, all Cells will be included.

Physical Surface ("Outer") = {1};
Physical Surface ("Middle") = {2};
Physical Surface ("Inner") = {3};

// label the "north-west" part of the exterior boundary

// note: you only need to label the Face elements

// (Physical Line in 2D and Physical Surface in 3D) that correspond
// to boundaries you are interested in. FiPy does not need them to
// construct the Mesh.

Physical Line ("NW") = {5};
"1 % locals())

It can be easier to specify certain domains and boundaries within Gmsh than it is to define the same domains
and boundaries with FiPy expressions.

Here we compare obtaining the same Cells and Faces using FiPy’s parametric descriptions and Gmsh’s labels.

>>> x, y = squaredCircle.cellCenters
>>> middle = ((x*#*2 + y*+2 <= radius*x2)
& ~((x > —-side/2) & (x < side/2)

& (y > —side/2) & (y < side/2)))

>>> print (middle == squaredCircle.physicalCells["Middle"]).all()
True
>>> X, Y = squaredCircle.faceCenters

>>> NW = ((X#*%2 + Yxx2 > (1.99xradius) *x*2)

(
& (X#x2 + Y#x2 < (2.0l+radius) x*2)
& (X <= 0) & (Y >= 0))

>>> print (NW == squaredCircle.physicalFaces["NW"]) .all ()
True

It is possible to direct Gmsh to give the mesh different densities in different locations

>>> geo = rrrs
// A mesh consisting of a square

// define the corners of the square

Point (1) {1, 1, 0, 1};
Point (2) = {0, 1, 0, 1};
Point (3) = {0, 0, 0, 1};
Point (4) = {1, 0, 0, 1};

// define the square
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Line(l) = {1, 2};
Line(2) = {2, 3};
Line(3) = {3, 4};
Line(4) = {4, 1};

// define the boundary
Line Loop(l) = {1, 2, 3, 4};
// define the domain

Plane Surface(l) = {1};

rrr

>>> from fipy import CellVariable, numerix

>>> std = []
>>> bkg = None
>>> for refine in range(4):
square = Gmsh2D (geo, background=bkg)
X, y = square.cellCenters
bkg = CellVariable (mesh=square, value=abs(x / 4) + 0.01)
std.append (numerix.std (numerix.sqrt (2 * square.cellVolumes) / bkg))

Check that the mesh is monotonically approaching the desired density

>>> print numerix.greater(std[:-1], std[l:]).all()
True

and that the final density is close enough to the desired density

>>> print std[-1] < 0.2
True

The initial mesh doesn’t have to be from Gmsh

>>> from fipy import Tri2D

>>> trisquare = Tri2D (nx=1, ny=1)

>>> x, y = trisquare.cellCenters

>>> bkg = CellVariable (mesh=trisquare, value=abs(x / 4) + 0.01)

>>> stdl = numerix.std(numerix.sqrt (2 * trisquare.cellVolumes) / bkg)

>>> square Gmsh2D (geo, background=bkg)

>>> x, y = square.cellCenters
>>> bkg = CellVariable (mesh=square, value=abs(x / 4) + 0.01)
>>> std2 = numerix.std(numerix.sqrt (2 * square.cellVolumes) / bkg)

>>> print stdl > std2
True

Parameters

* arg: a string giving (i) the path to an MSH file, (ii) a path to a Gmsh geometry
(”.geo”) file, or (iii) a Gmsh geometry script

* coordDimensions: an integer indicating dimension of shapes

e order: 17?
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* background: a CellVariable that specifies the desired characteristic lengths of the mesh cells

class fipy.meshes.Gmsh2DIn3DSpace (arg, communicator=DummyComm(), order=1, back-

ground=None)
Bases: fipy.meshes.gmshMesh.Gmsh2D

Create a topologically 2D Mesh in 3D coordinates using Gmsh
Parameters

* arg: a string giving (i) the path to an MSH file, (ii) a path to a Gmsh geometry
(”.geo”) file, or (iii) a Gmsh geometry script

* coordDimensions: an integer indicating dimension of shapes
* order: 177
* background: a CellVariable that specifies the desired characteristic lengths of the mesh cells

class fipy.meshes.Gmsh3D (arg, communicator=DummyComm( ), order=1, background=None)
Bases: fipy.meshes.mesh.Mesh

Create a 3D Mesh using Gmsh
Parameters

* arg: a string giving (i) the path to an MSH file, (ii) a path to a Gmsh geometry
(”.geo”) file, or (iii) a Gmsh geometry script

* order: 11?
* background: a CellVariable that specifies the desired characteristic lengths of the mesh cells

class fipy.meshes.GmshGrid2D (dx=1.0, dy=1.0, nx=1, ny=None, coordDimensions=2, communica-

tor=DummyComm( ), order=1)
Bases: fipy.meshes.gmshMesh.Gmsh2D

Should serve as a drop-in replacement for Grid2D.

class fipy.meshes.GmshGrid3D (dx=1.0, dy=1.0, dz=1.0, nx=1, ny=None, nz=None, communica-

tor=DummyComm( ), order=1)
Bases: fipy.meshes.gmshMesh.Gmsh3D

Should serve as a drop-in replacement for Grid3D.

class fipy.meshes.GmshImporter2D (arg, coordDimensions=2)
Bases: fipy.meshes.gmshMesh.Gmsh2D

class fipy.meshes.GmshImporter2DIn3DSpace (arg)
Bases: fipy.meshes.gmshMesh.Gmsh2DIn3DSpace

class fipy.meshes.GmshImporter3D (arg)
Bases: fipy.meshes.gmshMesh.Gmsh3D

21.2 abstractMesh Module

class fipy.meshes.abstractMesh.AbstractMesh (communicator, _RepresentationClass=<class
‘fipy.meshes.representations.abstractRepresentation._AbstractRepresentc
_TopologyClass=<class

‘fipy.meshes.topologies.abstractTopology._AbstractTopology’>)
Bases: object

A class encapsulating all commonalities among meshes in FiPy.

21.2. abstractMesh Module 211



FiPy Manual, Release 3.1

VTKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

VTKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

aspect2D
The physical y:x aspect ratio of a 2D mesh

cellCenters
cellDistanceVectors

cellFacelDs
Topology properties

cellToFaceDistanceVectors
cellVolumes

extents

exteriorFaces

faceCenters

facesBack
Return list of faces on back boundary of Grid3D with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print numerix.allequal((6, 7, 8, 9, 10, 11),
numerix.nonzero (mesh.facesBack) [0])
True

facesBottom
Return list of faces on bottom boundary of Grid3D with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2
>>> print numerix.allequal((12, 13, 14),

numerix.nonzero (mesh.facesBottom) [0])

., dz = 4.

>>> x, y, z = mesh.faceCenters
>>> print numerix.allequal( (12, 13),
.. numerix.nonzero (mesh.facesBottom & (x < 1)) [0])
1
facesDown

Return list of faces on bottom boundary of Grid3D with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2.
>>> print numerix.allequal((12, 13, 14),

. numerix.nonzero (mesh.facesBottom) [0])
1

>>> x, y, z = mesh.faceCenters
>>> print numerix.allequal((12, 13),
.. numerix.nonzero (mesh.facesBottom & (x < 1)) [0])
1
facesFront

Return list of faces on front boundary of Grid3D with the z-axis running from front to back.
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>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print numerix.allequal((0, 1, 2, 3, 4, 5),
numerix.nonzero (mesh.facesFront) [0])
True

facesLeft
Return face on left boundary of Grid1D as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2.
>>> print numerix.allequal((21, 25),

numerix.nonzero (mesh.facesLeft) [0])
True
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print numerix.allequal((9, 13),

numerix.nonzero (mesh.facesLeft) [0])
True

facesRight
Return list of faces on right boundary of Grid3D with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print numerix.allequal ((24, 28),
Ce numerix.nonzero (mesh.facesRight) [0])
True
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print numerix.allequal( (12, 16),
. numerix.nonzero (mesh.facesRight) [0])
True
facesTop
Return list of faces on top boundary of Grid3D with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2.
>>> print numerix.allequal((18, 19, 20),

numerix.nonzero (mesh.facesTop) [0])
True
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print numerix.allequal((6, 7, 8),

numerix.nonzero (mesh.facesTop) [0])
True

facesUp
Return list of faces on top boundary of Grid3D with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2.
>>> print numerix.allequal((18, 19, 20),
Ce numerix.nonzero (mesh.facesTop) [0])
True
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print numerix.allequal((6, 7, 8),
L. numerix.nonzero (mesh.facesTop) [0])
True
getCellCenters (*args, **kwds)
Deprecated since version 3.0: use the cel1Centers property instead
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getCellVolumes ( *args, **kwds)
Deprecated since version 3.0: use the ce11Volumes property instead

getDim ( *args, **kwds)
Deprecated since version 3.0: use the dim property instead

getExteriorFaces (*args, **kwds)
Deprecated since version 3.0: use the exteriorFaces property instead

Return only the faces that have one neighboring cell.

getFaceCellIDs ( *args, **kwds)
Deprecated since version 3.0: use the faceCellIDs property instead

getFaceCenters (*args, **kwds)
Deprecated since version 3.0: use the faceCenters property instead

getFacesBack ( *args, **kwds)
Deprecated since version 3.0: use the facesBack property instead

getFacesBottom ( *args, **kwds)
Deprecated since version 3.0: use the facesBottom property instead

getFacesDown ( *args, **kwds)
Deprecated since version 3.0: use the facesBottom property instead

getFacesFront (*args, **kwds)
Deprecated since version 3.0: use the facesFront property instead

getFacesLeft (*args, **kwds)
Deprecated since version 3.0: use the facesLeft property instead

getFacesRight (*args, **kwds)
Deprecated since version 3.0: use the facesRight property instead

getFacesTop ( *args, **kwds)
Deprecated since version 3.0: use the facesTop property instead

getFacesUp ( *args, **kwds)
Deprecated since version 3.0: use the facesTop property instead

getInteriorFaceCelllIDs (*args, **kwds)
Deprecated since version 3.0: use the interiorFaceCellIDs property instead

getInteriorFacelIDs (*args, **kwds)
Deprecated since version 3.0: use the interiorFaceIDs property instead

getInteriorFaces (*args, **kwds)
Deprecated since version 3.0: use the interiorFaces property instead

Return only the faces that have two neighboring cells.
getNearestCell (point)

getNumberOfCells ( *args, **kwds)
Deprecated since version 3.0: use the numberOfCells property instead

getPhysicalShape ( *args, **kwds)
Deprecated since version 3.0: use the physicalShape property instead

getScale (*args, **kwds)
Deprecated since version 3.0: use the scale property instead

getShape ( *args, **kwds)
Deprecated since version 3.0: use the shape property instead
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getVertexCoords (*args, **kwds)
Deprecated since version 3.0: use the vertexCoords property instead

interiorFaceCellIDs
interiorFacelDs
interiorFaces

scale

scaledCellDistances
scaledCellToCellDistances
scaledCellVolumes
scaledFaceAreas
scaledFaceToCellDistances

setScale (*args, **kwds)
Deprecated since version 3.0: use the scale property instead

Equivalent to using ce11Centers[0].

>>> from fipy import x
>>> print GridlD (nx=2) .x
[ 0.5 1.5]

Equivalent to using cel1Centers[1].

>>> from fipy import =x

>>> print Grid2D (nx=2, ny=2).y

[ 0.5 0.5 1.5 1.5]

>>> print GridlD (nx=2) .y
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

Equivalent to using cel1Centers[2].

>>> from fipy import =

>>> print Grid3D (nx=2, ny=2, nz=2) .z

[ 0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print Grid2D (nx=2, ny=2).z

Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.
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21.3 cylindricalGridlD Module
21.4 cylindricalGrid2D Module

215 cylindricalNonUniformGridlD Module

1D Mesh

class fipy.meshes.cylindricalNonUniformGridlD.CylindricalNonUniformGridl1D (dx=1.0,
nx=None,
ori-
gin=(0,
),
over-
lap=2,
com-
mu-
ni-
ca-
tor=DummyComm( ),
*args,
**kwargs)

Bases: fipy.meshes.nonUniformGridlD.NonUniformGridlD

Creates a 1D cylindrical grid mesh.

>>> mesh = CylindricalNonUniformGridlD (nx = 3)

>>> print mesh.cellCenters

[[ 0.5 1.5 2.5]]

>>> mesh = CylindricalNonUniformGridlD (dx = (1, 2, 3))

>>> print mesh.cellCenters

[[ 0.5 2. 4.5]]

>>> print numerix.allclose (mesh.cellVolumes, (0.5, 4., 13.5))
True

>>> mesh = CylindricalNonUniformGridlD(nx = 2, dx = (1, 2, 3))
Traceback (most recent call last):

IndexError: nx != len (dx)

>>> mesh = CylindricalNonUniformGridlD (nx=2, dx=(1., 2.)) + ((1.,),)
>>> print mesh.cellCenters

[[ 1.5 3. 1]

>>> print numerix.allclose (mesh.cellVolumes, (1.5, 6))

True

21.6 cylindricalNonUniformGrid2D Module

2D rectangular Mesh
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class fipy.meshes.cylindricalNonUniformGrid2D.CylindricalNonUniformGrid2D (dx=1.0,
dy=1.0,
nx=None,
ny=None,
ori-
gin=((0.0,
),
(0.0,
)
over-
lap=2,
com-
mu-
ni-
ca-
tor=DummyComm( ),
*args,

**kwargs)
Bases: fipy.meshes.nonUniformGrid2D.NonUniformGrid2D

Creates a 2D cylindrical grid mesh with horizontal faces numbered first and then vertical faces.

21.7 cylindricalUniformGridlD Module

1D Mesh

class fipy.meshes.cylindricalUniformGridlD.CylindricalUniformGridlD (dx=1.0,

nx=1, ori-
gin=(0, ),
overlap=2,
communica-
tor=DummyComm( ),
*args,
**kwargs)

Bases: fipy.meshes.uniformGridlD.UniformGridlD

Creates a 1D cylindrical grid mesh.

>>> mesh = CylindricalUniformGridlD (nx = 3)
>>> print mesh.cellCenters
[[ 0.5 1.5 2.5]]

cellVolumes

21.8 cylindricalUniformGrid2D Module

2D cylindrical rectangular Mesh with constant spacing in x and constant spacing in y
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class fipy.meshes.cylindricalUniformGrid2D.CylindricalUniformGrid2D (dx=1.0,
dy=1.0,
nx=1, ny=1,
origin=((0,
), (0, ),
overlap=2,
communica-
tor=DummyComm( ),
*args,

**kwargs)
Bases: fipy.meshes.uniformGrid2D.UniformGrid2D

Creates a 2D cylindrical grid in the radial and axial directions, appropriate for axial symmetry.

cellVolumes

21.9 factoryMeshes Module

fipy.meshes.factoryMeshes.Grid3D (dx=1.0, dy=1.0, dz=1.0, nx=None, ny=None, nz=None,
Lx=None, Ly=None, Lz=None, overlap=2, communica-

tor=DummyComm())
Factory function to select between UniformGrid3D and NonUniformGrid3D. If Lx is specified the length of the

domain is always Lx regardless of dx.
Parameters

* dx: grid spacing in the horizontal direction
* dy: grid spacing in the vertical direction
* dz: grid spacing in the z-direction
 nx: number of cells in the horizontal direction
* ny: number of cells in the vertical direction
* nz: number of cells in the z-direction
* Lx: the domain length in the horizontal direction
* Ly: the domain length in the vertical direction
* Lz: the domain length in the z-direction

* overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.

* communicator:  either fipy.tools.parallelComm or fipy.tools.serial Comm. Select
fipy.tools.serial Comm to create a serial mesh when running in parallel. Mostly used for
test purposes.

fipy.meshes.factoryMeshes.Grid2D (dx=1.0, dy=1.0, nx=None, ny=None, Lx=None, Ly=None,

overlap=2, communicator=DummyComm())
Factory function to select between UniformGrid2D and NonUniformGrid2D. If Lx is specified the length of the

domain is always Lx regardless of dx.
Parameters
* dx: grid spacing in the horizontal direction

* dy: grid spacing in the vertical direction
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nx: number of cells in the horizontal direction
ny: number of cells in the vertical direction

Lx: the domain length in the horizontal direction
Ly: the domain length in the vertical direction

overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.

communicator:  either fipy.tools.parallelComm or fipy.tools.serialComm. Select
fipy.tools.serial Comm to create a serial mesh when running in parallel. Mostly used for
test purposes.

>>> print Grid2D (Lx=3., nx=2) .dx

1.5

fipy.meshes.factoryMeshes.GridlD (dx=1.0, nx=None, Lx=None, overlap=2, communica-

tor=DummyComm())

Factory function to select between UniformGrid1D and NonUniformGrid1D. If Lx is specified the length of the
domain is always Lx regardless of dx.

Parameters

dx: grid spacing in the horizonal direction
nx: number of cells in the horizonal direction
Lx: the domain length in the horizonal direction

overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.

communicator:  either fipy.tools.parallelComm or fipy.tools.serialComm. Select

fipy.tools.serial Comm to create a serial mesh when running in parallel. Mostly used for

test purposes.

fipy.meshes.factoryMeshes.CylindricalGrid2D (dr=None, dz=None, nr=None, nz=None,

Lr=None, Lz=None, dx=1.0, dy=1.0,
nx=None, ny=None, Lx=None, Ly=None,
origin=((0, ), (0, )), overlap=2, communica-
tor=DummyComm())

Factory function to select between CylindricalUniformGrid2D and CylindricalNonUniformGrid2D. If Lx is
specified the length of the domain is always Lx regardless of dx.

Parameters

dr or dx: grid spacing in the radial direction

dz or dy: grid spacing in the vertical direction

nr or nx: number of cells in the radial direction

nz or ny: number of cells in the vertical direction

Lr or Lx: the domain length in the radial direction

Lz or Ly: the domain length in the vertical direction

origin : position of the mesh’s origin in the form ((x,),(y,))

overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.
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* communicator:  either fipy.tools.parallelComm or fipy.tools.serial Comm. Select
fipy.tools.serial Comm to create a serial mesh when running in parallel. Mostly used for
test purposes.

fipy.meshes.factoryMeshes.CylindricalGridlD (dr=None, nr=None, Lr=None, dx=1.0,
nx=None, Lx=None, origin=(0, ), over-

lap=2, communicator=DummyComm())
Factory function to select between CylindricalUniformGrid1D and CylindricalNonUniformGrid1D. If Lx is

specified the length of the domain is always Lx regardless of dx.
Parameters
* dr or dx: grid spacing in the radial direction
* nr or nx: number of cells in the radial direction
e Lror Lx: the domain length in the radial direction
* origin : position of the mesh’s origin in the form (x,)

* overlap: the number of overlapping cells for parallel simulations. Generally 2 is adequate.
Higher order equations or discretizations require more.

* communicator:  either fipy.tools.parallelComm or fipy.tools.serial Comm. Select
fipy.tools.serial Comm to create a serial mesh when running in parallel. Mostly used for
test purposes.

21.10 gmshMesh Module

fipy.meshes.gmshMesh.openMSHFile (name, dimensions=None, coordDimensions=None, com-
municator=DummyComm(), order=1, mode="r’, back-

ground=None)
Open a Gmsh MSH file

Parameters
* filename: a string indicating gmsh output file
* dimensions: an integer indicating dimension of mesh
* coordDimensions: an integer indicating dimension of shapes
* order: 17?7

* mode: a string beginning with ‘r’ for reading and ‘w’ for writing. The file will be created if
it doesn’t exist when opened for writing; it will be truncated when opened for writing. Add
a ‘b’ to the mode for binary files.

* background: a CellVariable that specifies the desired characteristic lengths of the mesh cells

fipy.meshes.gmshMesh.openPOSFile (name, communicator=DummyComm(), mode="w’)
Open a Gmsh POS post-processing file

class fipy.meshes.gmshMesh.Gmsh2D (arg, coordDimensions=2, communicator=DummyComm(), or-

der=1, background=None)
Bases: fipy.meshes.mesh2D.Mesh2D

Construct a 2D Mesh using Gmsh

>>> radius = 5.
>>> gside = 4.
>>> squaredCircle = Gmsh2D ('’
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// A mesh consisting of a square inside a circle inside a circle
// define the basic dimensions of the mesh

cellSize = 1;
radius = % (radius)g;
side = % (side)qg;

// define the compass points of the inner circle

Point (1) {0, 0, 0, cellSize};

Point (2) = {-radius, 0, 0, cellSize};
Point (3) = {0, radius, 0, cellSize};
Point (4) = {radius, 0, 0, cellSize};
Point (5) = {0, -radius, 0, cellSize};

// define the compass points of the outer circle

Point (6) {-2+radius, 0, 0, cellSize};
Point (7) = {0, 2*radius, 0, cellSize};
Point (8) = {2xradius, 0, 0, cellSize};
Point (9) = {0, -2xradius, 0, cellSize};

// define the corners of the square

Point (10) = {side/2, side/2, 0, cellSize/2};

Point (11) = {-side/2, side/2, 0, cellSize/2};
Point (12) = {-side/2, -side/2, 0, cellSize/2};
Point (13) = {side/2, -side/2, 0, cellSize/2};

// define the inner circle

Circle (1) {2, 1, 3};
Circle(2) = {3, 1, 4};
Circle(3) = {4, 1, 5};
Circle(4) = {5, 1, 2};

// define the outer circle

Circle(5) = {6, 1, 7};
Circle(6) = {7, 1, 8};
Circle(7) = {8, 1, 9};
Circle(8) = {9, 1, 6};

// define the square

Line(9) = {10, 13};
Line (10) = {13, 12};
Line (11) = {12, 11};
Line (12) = {11, 10};

// define the three boundaries

Line Loop(l) = {1, 2, 3, 4};
Line Loop(2) = {5, 6, 7, 8};
Line Loop (3) {9, 10, 11, 12};

// define the three domains
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Plane Surface(l) = {2, 1};
Plane Surface(2) = {1, 3};
Plane Surface(3) = {3};

// label the three domains

// attention: if you use any "Physical" labels, you xmust* label

// all elements that correspond to FiPy Cells (Physical Surace in 2D
// and Physical Volume in 3D) or Gmsh will not include them and FiPy
// will not be able to include them in the Mesh.

// note: if you do not use any labels, all Cells will be included.

Physical Surface ("Outer") = {1};
Physical Surface ("Middle") = {2};
Physical Surface ("Inner") = {3};

// label the "north-west" part of the exterior boundary

// note: you only need to label the Face elements

// (Physical Line in 2D and Physical Surface in 3D) that correspond
// to boundaries you are interested in. FiPy does not need them to
// construct the Mesh.

Physical Line ("NW") = {5};
77 % locals())

It can be easier to specify certain domains and boundaries within Gmsh than it is to define the same domains
and boundaries with FiPy expressions.

Here we compare obtaining the same Cells and Faces using FiPy’s parametric descriptions and Gmsh’s labels.

>>> x, y = squaredCircle.cellCenters
>>> middle = ((x**2 + y**2 <= radius*x2)
& ~((x > —-side/2) & (x < side/2)

& (y > —-side/2) & (y < side/2)))

>>> print (middle == squaredCircle.physicalCells["Middle"]).all()
True
>>> X, Y = squaredCircle.faceCenters

>>> NW = ((X*%2 + Yxx2 > (1.99xradius) *x*2)

(
& (X*x2 4+ Yxx2 < (2.0lxradius) «*2)
& (X <= 0) & (Y >= 0))

>>> print (NW == squaredCircle.physicalFaces["NW"]) .all ()
True

It is possible to direct Gmsh to give the mesh different densities in different locations

>>> geo - rrr
// A mesh consisting of a square

// define the corners of the square

Point (1) = {1, 1, 0, 1};
Point (2) = {0, 1, 0, 1};
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Point (3) = {0, 0, 0, 1};
Point (4) = {1, 0, 0, 1};

// define the square

Line(l) = {1, 2};
Line (2) = {2, 3};
Line (3) = {3, 4};
Line(4) = {4, 1};

// define the boundary
Line Loop(l) = {1, 2, 3, 4};
// define the domain

Plane Surface(l) = {1};

rrr

>>> from fipy import CellVariable, numerix
>>> std = []
>>> bkg None
>>> for refine in range(4):
square = Gmsh2D (geo, background=bkg)
X, y = square.cellCenters
bkg = CellVariable (mesh=square, value=abs(x / 4) + 0.01)
std.append (numerix.std (numerix.sqrt (2 * square.cellVolumes) / bkg))

Check that the mesh is monotonically approaching the desired density

>>> print numerix.greater (std[:-1], std[l:]).all()
True

and that the final density is close enough to the desired density

>>> print std[-1] < 0.2
True

The initial mesh doesn’t have to be from Gmsh

>>> from fipy import Tri2D

>>> trisquare = Tri2D (nx=1, ny=1)

>>> x, y = trisquare.cellCenters

>>> bkg CellVariable (mesh=trisquare, value=abs(x / 4) + 0.01)

>>> stdl = numerix.std(numerix.sqrt (2 * trisquare.cellVolumes) / bkg)

>>> square = Gmsh2D (geo, background=bkg)

>>> x, y = square.cellCenters
>>> bkg = CellVariable (mesh=square, value=abs(x / 4) + 0.01)
>>> std2 = numerix.std(numerix.sqrt (2 * square.cellVolumes) / bkg)

>>> print stdl > std2
True

Parameters

* arg: a string giving (i) the path to an MSH file, (ii) a path to a Gmsh geometry
(”.geo”) file, or (iii) a Gmsh geometry script
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* coordDimensions: an integer indicating dimension of shapes
* order: 17?7
* background: a CellVariable that specifies the desired characteristic lengths of the mesh cells

class fipy.meshes.gmshMesh.Gmsh2DIn3DSpace (arg, communicator=DummyComm(), order=1,

background=None)
Bases: fipy.meshes.gmshMesh.Gmsh2D

Create a topologically 2D Mesh in 3D coordinates using Gmsh
Parameters

* arg: a string giving (i) the path to an MSH file, (ii) a path to a Gmsh geometry
(”.geo”) file, or (iii) a Gmsh geometry script

* coordDimensions: an integer indicating dimension of shapes
* order: 17?7
* background: a CellVariable that specifies the desired characteristic lengths of the mesh cells

class fipy.meshes.gmshMesh.Gmsh3D (arg, communicator=DummyComm(),  order=1,  back-

ground=None)
Bases: fipy.meshes.mesh.Mesh

Create a 3D Mesh using Gmsh
Parameters

* arg: a string giving (i) the path to an MSH file, (ii) a path to a Gmsh geometry
(”.geo”) file, or (iii) a Gmsh geometry script

* order: 17?7
* background: a CellVariable that specifies the desired characteristic lengths of the mesh cells

class fipy.meshes.gmshMesh.GmshGrid2D (dx=1.0, dy=1.0, nx=1, ny=None, coordDimensions=2,

communicator=DummyComm( ), order=1)
Bases: fipy.meshes.gmshMesh.Gmsh2D

Should serve as a drop-in replacement for Grid2D.

class fipy.meshes.gmshMesh.GmshGrid3D (dx=1.0, dy=1.0, dz=1.0, nx=1, ny=None, nz=None, com-

municator=DummyComm( ), order=1)
Bases: fipy.meshes.gmshMesh.Gmsh3D

Should serve as a drop-in replacement for Grid3D.

class fipy.meshes.gmshMesh.GmshImporter2D (arg, coordDimensions=2)
Bases: fipy.meshes.gmshMesh.Gmsh2D

class fipy.meshes.gmshMesh.GmshImporter2DIn3DSpace (arg)
Bases: fipy.meshes.gmshMesh.Gmsh2DIn3DSpace

class fipy.meshes.gmshMesh.GmshImporter3D (arg)
Bases: fipy.meshes.gmshMesh.Gmsh3D

224 Chapter 21. meshes Package



FiPy Manual, Release 3.1

21.11 gridlD Module
21.12 grid2p Module
21.13 grid3D Module

21.14 mesh Module

exception fipy.meshes.mesh.MeshAdditionError
Bases: exceptions.Exception

class fipy.meshes.mesh.Mesh (vertexCoords, faceVertexIDs, cellFacelDs, communi-
cator=DummyCommy( ), _RepresentationClass=<class
‘fipy.meshes.representations.meshRepresentation._MeshRepresentation’>,

_TopologyClass=<class ‘fipy.meshes.topologies.meshTopology._MeshTopology’>)
Bases: fipy.meshes.abstractMesh.AbstractMesh

Generic mesh class using numerix to do the calculations
Meshes contain cells, faces, and vertices.

This is built for a non-mixed element mesh.

21.15 mesh1D Module

Generic mesh class using numerix to do the calculations
Meshes contain cells, faces, and vertices.
This is built for a non-mixed element mesh.

class fipy.meshes.meshlD.MeshlD (vertexCoords, faceVertexIDs, cellFacelDs, communi-
cator=DummyComm( ), _RepresentationClass=<class
‘fipy.meshes.representations.meshRepresentation._MeshRepresentation’>,

_TopologyClass=<class ‘fipy.meshes.topologies.meshTopology._Meshl1DTopology’>)
Bases: fipy.meshes.mesh.Mesh

21.16 mesh2D Module

Generic mesh class using numerix to do the calculations
Meshes contain cells, faces, and vertices.
This is built for a non-mixed element mesh.

class fipy.meshes.mesh2D.Mesh2D (vertexCoords, faceVertexIDs, cellFacelDs, communi-
cator=DummyComm( ), _RepresentationClass=<class
‘fipy.meshes.representations.meshRepresentation._MeshRepresentation’>,

_TopologyClass=<class ‘fipy.meshes.topologies.meshTopology._Mesh2DTopology’>)
Bases: fipy.meshes.mesh.Mesh

extrude (extrudeFunc=<function <lambda> at Ox1042fb7d0>, layers=1)
This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.
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Parameters
* extrudeFunc: function that takes the vertex coordinates and returns the displaced values

* layers: the number of layers in the extruded mesh (number of times extrudeFunc will be
called)

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print NonUniformGrid2D (nx=2,ny=2) .extrude (layers=2) .cellCenters
[l 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[ 0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[ 0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]]

>>> from fipy.meshes.tri2D import Tri2D

>>> print Tri2D () .extrude (layers=2) .cellCenters
[[ 0.83333333 0.5 0.16666667 0.5 0.83333333 0.5
0.16666667 0.5 ]
[ 0.5 0.83333333 0.5 0.16666667 0.5 0.83333333
0.5 0.16666667]
[ 0.5 0.5 0.5 0.5 1.5 1.5 1.5
1.5 11

21.17 nonUniformGridlD Module

1D Mesh

class fipy.meshes.nonUniformGridlD.NonUniformGridlD (dx=1.0, nx=None, overlap=2,
communicator=DummyComm(),
_BuilderClass=<class
‘fipy.meshes.builders.grid1 DBuilder._NonuniformGridl DBu
_RepresentationClass=<class
‘fipy.meshes.representations.gridRepresentation._Gridl DRej
_TopologyClass=<class

‘fipy.meshes.topologies.gridTopology._Gridl DTopology’>)
Bases: fipy.meshes.meshlD.MeshlD

Creates a 1D grid mesh.

>>> mesh = NonUniformGridlD (nx = 3)
>>> print mesh.cellCenters
[[ 0.5 1.5 2.5]]

>>> mesh = NonUniformGridlD (dx = (1, 2, 3))
>>> print mesh.cellCenters
[[ 0.5 2. 4.5]]

>>> mesh = NonUniformGridlD (nx 2, dx = (1, 2, 3))
Traceback (most recent call last):

IndexError: nx != len (dx)

21.18 nonUniformGrid2D Module

2D rectangular Mesh
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class fipy.meshes.nonUniformGrid2D.NonUniformGrid2D (dx=1.0, dy=1.0, nx=None,
ny=None, overlap=2, com-
municator=DummyComm(),
_RepresentationClass=<class
‘fipy.meshes.representations.gridRepresentation._Grid2DRe}
_TopologyClass=<class
‘fipy.meshes.topologies.gridTopology._Grid2DTopology’>)

Bases: fipy.meshes.mesh2D.Mesh2D

Creates a 2D grid mesh with horizontal faces numbered first and then vertical faces.

21.19 nonUniformGrid3D Module

class fipy.meshes.nonUniformGrid3D.NonUniformGrid3D (dx=1.0, dy=1.0, dz=1.0, nx=None,
ny=None, nz=None, overlap=2,
communicator=DummyComm(),
_RepresentationClass=<class
‘fipy.meshes.representations.gridRepresentation._Grid3DRej
_TopologyClass=<class

‘fipy.meshes.topologies.gridlopology._Grid3DTopology’>)
Bases: fipy.meshes.mesh.Mesh

3D rectangular-prism Mesh

X axis runs from left to right. Y axis runs from bottom to top. Z axis runs from front to back.
Numbering System:

Vertices: Numbered in the usual way. X coordinate changes most quickly, then Y, then Z.
Cells: Same numbering system as vertices.

Faces: XY faces numbered first, then XZ faces, then YZ faces. Within each subcategory, it is numbered in the
usual way.

21.20 periodicGridlD Module

Peridoic 1D Mesh

class fipy.meshes.periodicGridlD.PeriodicGridlD (dx=1.0, nx=None, overlap=2, *args,
**kwargs)
Bases: fipy.meshes.nonUniformGridlD.NonUniformGridlD
Creates a Periodic grid mesh.

>>> mesh = PeriodicGridlD(dx = (1, 2, 3))

>>> print numerix.allclose (numerix.nonzero (mesh.exteriorFaces) [0],

[31)

True

>>> print numerix.allclose (mesh.faceCellIDs.filled(-999),
[tz, o, 1, 21,
[0, 1, 2, -99911)

True
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>>> print numerix.allclose (mesh._cellDistances,
[ 2., 1.5, 2.5, 1.5])
True

>>> print numerix.allclose (mesh._cellToCellDistances,

[rz., 1.5, 2.57,

. [ 1.5, 2.5, 2..11)

True

>>> print numerix.allclose (mesh.faceNormals,

C [r 1., 1., 1., 1.11)

True

>>> print numerix.allclose (mesh._cellVertexIDs,

[y, 2, 21,

C [0, 1, 011)

True

cellCenters
Defined outside of a geometry class since we need the CellVariable version of cellCenters; that is, the

cellCenters defined in fipy.meshes.mesh and not in any geometry (since a CellVariable requires a reference
to a mesh).

21.21 periodicGrid2D Module

2D periodic rectangular Mesh

class fipy.meshes.periodicGrid2D.PeriodicGrid2D (dx=1.0, dy=1.0, nx=None,
ny=None, overlap=2, communica-
tor=DummyComm( ), *args, **kwargs)
Bases: fipy.meshes.periodicGrid2D._BasePeriodicGrid2D

Creates a periodic2D grid mesh with horizontal faces numbered first and then vertical faces. Vertices and cells
are numbered in the usual way.

>>> from fipy import numerix
>>> mesh = PeriodicGrid2D(dx = 1., dy = 0.5, nx = 2, ny = 2)

>>> print numerix.allclose (numerix.nonzero (mesh.exteriorFaces) [0],
[ 4, 5, 8, 111)
True

>>> print numerix.allclose (mesh.faceCellIDs.filled(-1),

2z, 3, 0, 1, 2, 3, 1, 0, 1, 3, 2, 31,

[OI 1! 2! 3/ 71! 71/ Or 1! 71! 2! 3/ 71]])
True

>>> print numerix.allclose (mesh._cellDistances,
[ 0.5, 0.5 0.5, 0.5, 0.25, 0.25, 1., 1., 0.5, 1., 1., O.
True

>>> print numerix.allclose (mesh.cellFacelIDs,
rfo, 1, 2, 31,
[7, 6, 10, 91,
[2, 3, 0, 11,
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ce (6, 7, 9, 1011)
True
>>> print numerix.allclose (mesh._cellToCellDistances,
[[ 0.5, 0.5, 0.5, 0.57],

r 1., 1., 1., 1. 171,

[ 0.5, 0.5, 0.5, 0.57],

[ 1., 1., 1., 1. 11)
True
>>> normals = [[0O, O, O, O, O, O, 1, 1, 1, 1, 1, 11,

[ll 1/ 1/ 17 1’ ll OI OV OI OI OI O]]

>>> print numerix.allclose (mesh.faceNormals, normals)
True

>>> print numerix.allclose (mesh._cellVertexIDs,
[r4, 5, 7, 81,

’

[3
(1,
[0

’

6, 7]
4, 5]
3, 4]

’

~

_oN s o
<

~

’ ' 1)

True
class fipy.meshes.periodicGrid2D.PeriodicGrid2DLeftRight (dx=1.0, dy=1.0, nx=None,
ny=None, overlap=2, com-
municator=DummyComm( ),
*args, **kwargs)
Bases: fipy.meshes.periodicGrid2D._BasePeriodicGrid2D
class fipy.meshes.periodicGrid2D.PeriodicGrid2DTopBottom (dx=1.0, dy=1.0, nx=None,
ny=None, overlap=2, com-
municator=DummyCommy( ),

*args, **kwargs)
Bases: fipy.meshes.periodicGrid2D._BasePeriodicGrid2D

21.22 skewedGrid2D Module

class fipy.meshes.skewedGrid2D.SkewedGrid2D (dx=1.0, dy=1.0, nx=None, ny=1, rand=0, *args,
**kwargs)
Bases: fipy.meshes.mesh2D.Mesh2D

Creates a 2D grid mesh with horizontal faces numbered first and then vertical faces. The points are skewed by

a random amount (between rand and -rand) in the X and Y directions.

physicalShape
Return physical dimensions of Grid2D.

shape

21.23 test Module

Test implementation of the mesh

21.22. skewedGrid2D Module
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21.24 tri2D Module

class fipy.meshes.tri2D.Tri2D (dx=1.0, dy=1.0, nx=1, ny=I, _RepresentationClass=<class
‘fipy.meshes.representations.gridRepresentation._Grid2DRepresentation’>,

_TopologyClass=<class ‘fipy.meshes.topologies.meshTopology._Mesh2DTopology’>)
Bases: fipy.meshes.mesh2D.Mesh2D

This class creates a mesh made out of triangles. It does this by starting with a standard Cartesian mesh (Grid2D)
and dividing each cell in that mesh (hereafter referred to as a ‘box’) into four equal parts with the dividing lines
being the diagonals.

Creates a 2D triangular mesh with horizontal faces numbered first then vertical faces, then diagonal faces.
Vertices are numbered starting with the vertices at the corners of boxes and then the vertices at the centers of
boxes. Cells on the right of boxes are numbered first, then cells on the top of boxes, then cells on the left of
boxes, then cells on the bottom of boxes. Within each of the ‘sub-categories’ in the above, the vertices, cells and
faces are numbered in the usual way.

Parameters

* dx, dy: The X and Y dimensions of each ‘box’. If dx <> dy, the line segments connecting
the cell centers will not be orthogonal to the faces.

* nx, ny: The number of boxes in the X direction and the Y direction. The total number of
boxes will be equal to nx * ny, and the total number of cells will be equal to 4 * nx * ny.

physicalShape
Return physical dimensions of Grid2D.

shape

21.25 uniformGrid Module

class fipy.meshes.uniformGrid.UniformGrid (communicator, _RepresentationClass=<class
‘fipy.meshes.representations.abstractRepresentation._AbstractRepresentatio
_TopologyClass=<class

‘fipy.meshes.topologies.abstractTopology._AbstractTopology’>)
Bases: fipy.meshes.abstractMesh.AbstractMesh

Wrapped scaled geometry properties

21.26 uniformGridlD Module

1D Mesh

class fipy.meshes.uniformGridlD.UniformGridlD (dx=1.0, nx=1, origin=(0, ), over-
lap=2, communicator=DummyComm(),
_RepresentationClass=<class
‘fipy.meshes.representations.gridRepresentation._Gridl DRepresentat
_TopologyClass=<class

‘fipy.meshes.topologies.gridlopology._GridlDTopology’>)
Bases: fipy.meshes.uniformGrid.UniformGrid

Creates a 1D grid mesh.
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>>> mesh = UniformGridlD (nx = 3)
>>> print mesh.cellCenters
[[ 0.5 1.5 2.5]]

exteriorFaces
Geometry set and calc

faceCelllIDs
faceNormals

vertexCoords

21.27 uniformGrid2D Module

2D rectangular Mesh with constant spacing in x and constant spacing in y

class fipy.meshes.uniformGrid2D.UniformGrid2D (dx=1.0, dy=1.0, nx=1, ny=I1, ori-
gin=((0, ), (0, ), overlap=2,
communicator=DummyComm( ),
_RepresentationClass=<class
‘fipy.meshes.representations.gridRepresentation._Grid2DRepresentat
_TopologyClass=<class

‘fipy.meshes.topologies.gridTopology._Grid2DTopology’>)
Bases: fipy.meshes.uniformGrid.UniformGrid

Creates a 2D grid mesh with horizontal faces numbered first and then vertical faces.
faceCelllIDs

faceNormals

faceVertexIDs

vertexCoords

21.28 uniformGrid3D Module

class fipy.meshes.uniformGrid3D.UniformGrid3D (dx=1.0, dy=1.0, dz=1.0, nx=I1, ny=I,

nz=1, origin=[[0], [0], [0]], over-
lap=2, communicator=DummyComm(),
_RepresentationClass=<class
‘fipy.meshes.representations.gridRepresentation._Grid3DRepresentat
_TopologyClass=<class
‘fipy.meshes.topologies.gridTopology._Grid3DTopology’>)

Bases: fipy.meshes.uniformGrid.UniformGrid

3D rectangular-prism Mesh with uniform grid spacing in each dimension.

X axis runs from left to right. Y axis runs from bottom to top. Z axis runs from front to back.

Numbering System:

Vertices: Numbered in the usual way. X coordinate changes most quickly, then Y, then Z.

* arrays are arranged Z, Y, X because in numerix, the final index is the one that changes the most quickly
&

Cells: Same numbering system as vertices.
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Faces: XY faces numbered first, then XZ faces, then YZ faces. Within each subcategory, it is numbered in the
usual way.

faceCelllIDs
faceNormals
faceVertexIDs

vertexCoords

21.29 Subpackages

21.29.1 builders Package

builders Package
abstractGridBuilder Module
gridlDBuilder Module
grid2DBuilder Module
grid3DBuilder Module
periodicGridlDBuilder Module

utilityClasses Module
21.29.2 numMesh Package

cylindricalGridlD Module
cylindricalGrid2D Module
cylindricalUniformGridlD Module
cylindricalUniformGrid2D Module
deprecatedWarning Module

fipy.meshes.numMesh.deprecatedWarning.numMeshDeprecated ()
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gmshImport Module

gridlD Module

grid2D Module

grid3D Module

periodicGridlD Module
periodicGrid2D Module
skewedGrid2D Module

tri2bp Module

uniformGridlD Module
uniformGrid2D Module
uniformGrid3D Module

21.29.3 representations Package
abstractRepresentation Module
gridRepresentation Module
meshRepresentation Module
21.29.4 topologies Package
abstractTopology Module
gridTopology Module

meshTopology Module

21.29. Subpackages
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o 22

models Package

22.1 models Package
22.2 test Module

22.3 Subpackages

22.3.1 levelSet Package

levelset Package
test Module
Subpackages

advection Package

advection Package

advectionEquation Module
advectionTerm Module
higherOrderAdvectionEquation Module
higherOrderAdvectionTerm Module

distanceFunction Package

distanceFunction Package
distanceVariable Module

levelSetDiffusionEquation Module
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levelSetDiffusionVariable Module

electroChem Package

electroChem Package

gapFillMesh Module

metalIonDiffusionEquation Module

metalIonSourceVariable Module

test Module

surfactant Package

surfactant Package

adsorbingSurfactantEquation Module

convectionCoeff Module

lines Module

matplotlibSurfactantViewer Module

mayaviSurfactantViewer Module

surfactantBulkDiffusionEquation Module

surfactantEquation Module

surfactantVariable Module
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o 2.3

solvers Package

23.1 solvers Package

exception fipy.solvers.SolverConvergenceWarning (solver, iter, relres)
Bases: exceptions.Warning

exception fipy.solvers.MaximumIterationWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

exception fipy.solvers.PreconditionerWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

exception fipy.solvers.IllConditionedPreconditionerWarning (solver, iter, relres)
Bases: fipy.solvers.solver.PreconditionerWarning

exception fipy.solvers.PreconditionerNotPositiveDefiniteWarning (solver, iter, relres)
Bases: fipy.solvers.solver.PreconditionerWarning

exception fipy.solvers.MatrixIllConditionedWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

exception fipy.solvers.StagnatedSolverWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

exception fipy.solvers.ScalarQuantityOutOfRangeWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

class fipy.solvers.Solver (tolerance=1e-10, iterations=1000, precon=None)
Bases: object

The base LinearXSolver class.

Attention: This class is abstract. Always create one of its subclasses.

Create a Solver object.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* precon: Preconditioner to use. This parameter is only available for Trilinos solvers.

fipy.solvers.DefaultSolver
alias of LinearPCGSolver

fipy.solvers.DummySolver
alias of LinearPCGSolver
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fipy.solvers.DefaultAsymmetricSolver
alias of LinearLUSolver

fipy.solvers.GeneralSolver
alias of LinearLUSolver

class fipy.solvers.LinearCGSSolver (precon=None, *args, **kwargs)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearCGSSolver solves a linear system of equations using the conjugate gradient squared method (CGS),
a variant of the biconjugate gradient method (BiCG). CGS solves linear systems with a general non-symmetric
coefficient matrix.

The LinearCGSSolver is a wrapper class for the the PySparse itsolvers.cgs() method.
Parameters
* precon: Preconditioner to use

class fipy.solvers.LinearPCGSolver (precon=<fipy.solvers.pysparse.preconditioners.ssorPreconditioner.SsorPreconditione

instance at 0x1043396¢8>, *args, **kwargs)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearPCGSolver solves a linear system of equations using the preconditioned conjugate gradient method
(PCG) with symmetric successive over-relaxation (SSOR) preconditioning by default. Alternatively, Jacobi
preconditioning can be specified through precon. The PCG method solves systems with a symmetric positive
definite coefficient matrix.

The LinearPCGSolver is a wrapper class for the the PySparse itsolvers.pcg() and precon.ssor() methods.
Parameters
* precon: Preconditioner to use

class fipy.solvers.LinearGMRESSolver (precon=<fipy.solvers.pysparse.preconditioners.jacobiPreconditioner.JacobiPrecon

instance at Ox104339878>, *args, **kwargs)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearGMRESSolver solves a linear system of equations using the generalised minimal residual method
(GMRES) with Jacobi preconditioning. GMRES solves systems with a general non-symmetric coefficient ma-
trix.

The LinearGMRESSolver is a wrapper class for the the PySparse itsolvers.gmres() and precon.jacobi() methods.
Parameters
* precon: Preconditioner to use

class fipy.solvers.LinearLUSolver (folerance=1e-10, iterations=10, maxlterations=10, pre-

con=None)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearLUSolver solves a linear system of equations using LU-factorisation. This method solves systems
with a general non-symmetric coefficient matrix using partial pivoting.

The LinearLUSolver is a wrapper class for the the PySparse superlu.factorize() method.
Creates a LinearLUSolver.
Parameters
* tolerance: The required error tolerance.

* iterations: The number of LU decompositions to perform. For large systems a number of
iterations is generally required.

* precon: not used but maintains a common interface.

238 Chapter 23. solvers Package


http://pysparse.sourceforge.net
http://pysparse.sourceforge.net
http://pysparse.sourceforge.net
http://pysparse.sourceforge.net

FiPy Manual, Release 3.1

class fipy.solvers.LinearJORSolver (folerance=1e-10, iterations=1000, relaxation=1.0)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearJORSolver solves a linear system of equations using Jacobi over-relaxation. This method solves
systems with a general non-symmetric coefficient matrix.

The Solver class should not be invoked directly.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* relaxation: The relaxation.

class fipy.solvers.JacobiPreconditioner
Bases: fipy.solvers.pysparse.preconditioners.preconditioner.Preconditioner

Jacobi preconditioner for PySparse. Really just a wrapper class for pysparse.precon.jacobi.
Create a Preconditioner object.

class fipy.solvers.SsorPreconditioner
Bases: fipy.solvers.pysparse.preconditioners.preconditioner.Preconditioner

SSOR preconditioner for PySparse. Really just a wrapper class for pysparse.precon.jacobi.

Create a Preconditioner object.

23.2 pysparseMatrixSolver Module

23.3 solver Module

The iterative solvers may output warnings if the solution is considered unsatisfactory. If you are not interested in these
warnings, you can invoke python with a warning filter such as:

$ python -Wignore::fipy.SolverConvergenceWarning myscript.py

If you are extremely concerned about your preconditioner for some reason, you can abort whenever it has problems
with:

$ python -Werror::fipy.PreconditionerWarning myscript.py

exception fipy.solvers.solver.SolverConvergenceWarning (solver, iter, relres)
Bases: exceptions.Warning

exception fipy.solvers.solver.MaximumIterationWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

exception fipy.solvers.solver.PreconditionerWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

exception fipy.solvers.solver.IllConditionedPreconditionerWarning (solver, iter, rel-

res)
Bases: fipy.solvers.solver.PreconditionerWarning

exception fipy.solvers.solver.PreconditionerNotPositiveDefiniteWarning (solver,
iter,

relres)
Bases: fipy.solvers.solver.PreconditionerWarning
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exception fipy.solvers.solver.MatrixIllConditionedWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

exception fipy.solvers.solver.StagnatedSolverWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

exception fipy.solvers.solver.ScalarQuantityOutOfRangeWarning (solver, iter, relres)
Bases: fipy.solvers.solver.SolverConvergenceWarning

class fipy.solvers.solver.Solver (tolerance=1e-10, iterations=1000, precon=None)
Bases: object

The base LinearXSolver class.

Attention: This class is abstract. Always create one of its subclasses.

Create a Solver object.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use. This parameter is only available for Trilinos solvers.

23.4 test Module

23.5 Subpackages

23.5.1 pyAMG Package
pyAMG Package
fipy.solvers.pyAMG.DefaultSolver

alias of LinearGMRESSolver

fipy.solvers.pyAMG.DummySolver
alias of LinearGMRESSolver

fipy.solvers.pyAMG.DefaultAsymmetricSolver
alias of LinearLUSolver

fipy.solvers.pyAMG.GeneralSolver
alias of LinearGeneralSolver

class fipy.solvers.pyAMG.LinearGMRESSolver (folerance=1e-15, iterations=2000, pre-
con=<fipy.solvers.pyAMG.preconditioners.smoothedAggregationPrecond

instance at 0x107fd8050>)
Bases: fipy.solvers.scipy.linearGMRESSolver.LinearGMRESSolver

The LinearGMRESSolver is an interface to the GMRES solver in Scipy, using the pyAMG SmoothedAggrega-
tionPreconditioner by default.

Parameters
* tolerance: The required error tolerance.

* iterations: The maximum number of iterative steps to perform.
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* precon: Preconditioner to use.

class fipy.solvers.pyAMG.LinearCGSSolver (tolerance=1e-15, iterations=2000, pre-
con=<fipy.solvers.pyAMG.preconditioners.smoothedAggregationPreconditio

instance at Ox107fd8fc8>)
Bases: fipy.solvers.scipy.linearCGSSolver.LinearCGSSolver

The LinearCGSSolver is an interface to the CGS solver in Scipy, using the pyAMG SmoothedAggregationPre-
conditioner by default.

Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* precon: Preconditioner to use.

class fipy.solvers.pyAMG.LinearPCGSolver (tolerance=1e-15, iterations=2000, pre-
con=<fipy.solvers.pyAMG.preconditioners.smoothedAggregationPreconditio
instance at 0x107fd8680>)

Bases: fipy.solvers.scipy.linearPCGSolver.LinearPCGSolver

The LinearPCGSolver is an interface to the PCG solver in Scipy, using the pyAMG SmoothedAggregationPre-
conditioner by default.

Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* precon: Preconditioner to use.

class fipy.solvers.pyAMG.LinearLUSolver (folerance=1e-10, iterations=1000, precon=None)
Bases: fipy.solvers.scipy.scipySolver._ScipySolver

The LinearLUSolver solves a linear system of equations using LU-factorisation. The LinearLUSolver is a
wrapper class for the the Scipy scipy.sparse.linalg.splu moduleq.

Create a Solver object.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* precon: Preconditioner to use. This parameter is only available for Trilinos solvers.

class fipy.solvers.pyAMG.LinearGeneralSolver (folerance=1e-10, iterations=1000,  pre-

con=None)
Bases: fipy.solvers.scipy.scipySolver._ScipySolver

The LinearGeneralSolver is an interface to the generic pyAMG, which solves the arbitrary system Ax=b with
the best out-of-the box choice for a solver. See pyAMG.solve for details.

Create a Solver object.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use. This parameter is only available for Trilinos solvers.
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linearCGSSolver Module

class fipy.solvers.pyAMG.linearCGSSolver.LinearCGSSolver (folerance=1e-15, it-
erations=2000, pre-
con=<fipy.solvers.pyAMG.preconditioners.smoothed,

instance at 0x107fd8fc8>)
Bases: fipy.solvers.scipy.linearCGSSolver.LinearCGSSolver

The LinearCGSSolver is an interface to the CGS solver in Scipy, using the pyAMG SmoothedAggregationPre-
conditioner by default.

Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use.

linearGMRESSolver Module

class fipy.solvers.pyAMG.linearGMRESSolver.LinearGMRESSolver (folerance=1e-15,
iterations=2000, pre-
con=<fipy.solvers.pyAMG.preconditioners.smo
instance at

0x107fd8050>)
Bases: fipy.solvers.scipy.linearGMRESSolver.LinearGMRESSolver

The LinearGMRESSolver is an interface to the GMRES solver in Scipy, using the pyAMG SmoothedAggrega-
tionPreconditioner by default.

Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use.

linearGeneralSolver Module

class fipy.solvers.pyAMG.linearGeneralSolver.LinearGeneralSolver (folerance=1e-
10, itera-
tions=1000,

precon=None)
Bases: fipy.solvers.scipy.scipySolver._ScipySolver

The LinearGeneralSolver is an interface to the generic pyAMG, which solves the arbitrary system Ax=b with
the best out-of-the box choice for a solver. See pyAMG.solve for details.

Create a Solver object.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use. This parameter is only available for Trilinos solvers.
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linearLUSolver Module

class fipy.solvers.pyAMG.linearLUSolver.LinearLUSolver (tolerance=1e-10, itera-

tions=1000, precon=None)
Bases: fipy.solvers.scipy.scipySolver._ScipySolver

The LinearLUSolver solves a linear system of equations using LU-factorisation. The LinearLUSolver is a
wrapper class for the the Scipy scipy.sparse.linalg.splu moduleq.

Create a Solver object.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use. This parameter is only available for Trilinos solvers.

linearPCGSolver Module

class fipy.solvers.pyAMG.linearPCGSolver.LinearPCGSolver (tolerance=1e-15, it-
erations=2000, pre-
con=<fipy.solvers.pyAMG.preconditioners.smoothed,

instance at 0x107fd8680> )
Bases: fipy.solvers.scipy.linearPCGSolver.LinearPCGSolver

The LinearPCGSolver is an interface to the PCG solver in Scipy, using the pyAMG SmoothedAggregationPre-
conditioner by default.

Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* precon: Preconditioner to use.
smoothedAggregationSolver Module

Subpackages

preconditioners Package

preconditioners Package

smoothedAggregationPreconditioner Module
class fipy.solvers.pyAMG.preconditioners.smoothedAggregationPreconditioner.SmoothedAggregatic

23.5.2 pysparse Package
pysparse Package

fipy.solvers.pysparse.DefaultSolver
alias of LinearPCGSolver
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fipy.solvers.pysparse.DummySolver

alias of LinearPCGSolver

fipy.solvers.pysparse.DefaultAsymmetricSolver

alias of LinearLUSolver

fipy.solvers.pysparse.GeneralSolver

alias of LinearLUSolver

class fipy.solvers.pysparse.LinearCGSSolver (precon=None, *args, **kwargs)

Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearCGSSolver solves a linear system of equations using the conjugate gradient squared method (CGS),
a variant of the biconjugate gradient method (BiCG). CGS solves linear systems with a general non-symmetric
coefficient matrix.

The LinearCGSSolver is a wrapper class for the the PySparse itsolvers.cgs() method.
Parameters

 precon: Preconditioner to use

class fipy.solvers.pysparse.LinearPCGSolver (precon=<fipy.solvers.pysparse.preconditioners.ssorPreconditioner.Ssorl

instance at Ox1043396¢8>, *args, **kwargs)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearPCGSolver solves a linear system of equations using the preconditioned conjugate gradient method
(PCG) with symmetric successive over-relaxation (SSOR) preconditioning by default. Alternatively, Jacobi
preconditioning can be specified through precon. The PCG method solves systems with a symmetric positive
definite coefficient matrix.

The LinearPCGSolver is a wrapper class for the the PySparse itsolvers.pcg() and precon.ssor() methods.
Parameters

* precon: Preconditioner to use

class fipy.solvers.pysparse.LinearGMRESSolver (precon=<fipy.solvers.pysparse.preconditioners.jacobiPreconditioner.

instance at 0x104339878>, *args, **kwargs)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearGMRESSolver solves a linear system of equations using the generalised minimal residual method
(GMRES) with Jacobi preconditioning. GMRES solves systems with a general non-symmetric coefficient ma-
trix.

The LinearGMRESSolver is a wrapper class for the the PySparse itsolvers.gmres() and precon.jacobi() methods.
Parameters

* precon: Preconditioner to use

class fipy.solvers.pysparse.LinearLUSolver (folerance=1e-10, iterations=10,  maxltera-

tions=10, precon=None)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearLUSolver solves a linear system of equations using LU-factorisation. This method solves systems
with a general non-symmetric coefficient matrix using partial pivoting.

The LinearLUSolver is a wrapper class for the the PySparse superlu.factorize() method.
Creates a LinearLUSolver.
Parameters

* tolerance: The required error tolerance.
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* iterations: The number of LU decompositions to perform. For large systems a number of
iterations is generally required.

* precon: not used but maintains a common interface.

class fipy.solvers.pysparse.LinearJORSolver (folerance=1e-10, iterations=1000, relax-

ation=1.0)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearJORSolver solves a linear system of equations using Jacobi over-relaxation. This method solves
systems with a general non-symmetric coefficient matrix.

The Solver class should not be invoked directly.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* relaxation: The relaxation.

class fipy.solvers.pysparse.JacobiPreconditioner
Bases: fipy.solvers.pysparse.preconditioners.preconditioner.Preconditioner

Jacobi preconditioner for PySparse. Really just a wrapper class for pysparse.precon.jacobi.
Create a Preconditioner object.

class fipy.solvers.pysparse.SsorPreconditioner
Bases: fipy.solvers.pysparse.preconditioners.preconditioner.Preconditioner

SSOR preconditioner for PySparse. Really just a wrapper class for pysparse.precon.jacobi.

Create a Preconditioner object.

linearCGSSolver Module

class fipy.solvers.pysparse.linearCGSSolver.LinearCGSSolver (precon=None, *args,
*rkwargs)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver
The LinearCGSSolver solves a linear system of equations using the conjugate gradient squared method (CGS),
a variant of the biconjugate gradient method (BiCG). CGS solves linear systems with a general non-symmetric
coefficient matrix.

The LinearCGSSolver is a wrapper class for the the PySparse itsolvers.cgs() method.
Parameters

* precon: Preconditioner to use

linearGMRESSolver Module

class fipy.solvers.pysparse.linearGMRESSolver.LinearGMRESSolver (precon=<fipy.solvers.pysparse.preconditio
instance at
0x104339878>,
*args, **kwargs)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearGMRESSolver solves a linear system of equations using the generalised minimal residual method
(GMRES) with Jacobi preconditioning. GMRES solves systems with a general non-symmetric coefficient ma-
trix.
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The LinearGMRESSolver is a wrapper class for the the PySparse itsolvers.gmres() and precon.jacobi() methods.
Parameters

* precon: Preconditioner to use

linearJORSolver Module

class fipy.solvers.pysparse.linearJORSolver.LinearJORSolver (folerance=1e-10,
iterations=1000, relax-
ation=1.0)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearJORSolver solves a linear system of equations using Jacobi over-relaxation. This method solves
systems with a general non-symmetric coefficient matrix.

The Solver class should not be invoked directly.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

¢ relaxation: The relaxation.

linearLUSolver Module

class fipy.solvers.pysparse.linearLUSolver.LinearLUSolver (tolerance=1e-10, iter-
ations=10, maxltera-

tions=10, precon=None)
Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearLUSolver solves a linear system of equations using LU-factorisation. This method solves systems
with a general non-symmetric coefficient matrix using partial pivoting.

The LinearLUSolver is a wrapper class for the the PySparse superlu.factorize() method.
Creates a LinearLUSolver.
Parameters
* tolerance: The required error tolerance.

* iterations: The number of LU decompositions to perform. For large systems a number of
iterations is generally required.

* precon: not used but maintains a common interface.

linearPCGSolver Module

class fipy.solvers.pysparse.linearPCGSolver.LinearPCGSolver (precon=<fipy.solvers.pysparse.preconditioners.s

instance at
0x1043396¢8>, *args,
**kwargs)

Bases: fipy.solvers.pysparse.pysparseSolver.PysparseSolver

The LinearPCGSolver solves a linear system of equations using the preconditioned conjugate gradient method
(PCG) with symmetric successive over-relaxation (SSOR) preconditioning by default. Alternatively, Jacobi
preconditioning can be specified through precon. The PCG method solves systems with a symmetric positive
definite coefficient matrix.
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The LinearPCGSolver is a wrapper class for the the PySparse itsolvers.pcg() and precon.ssor() methods.
Parameters

* precon: Preconditioner to use

pysparseSolver Module

class fipy.solvers.pysparse.pysparseSolver.PysparseSolver (*args, **kwargs)
Bases: fipy.solvers.pysparseMatrixSolver._PysparseMatrixSolver

The base pysparseSolver class.

Attention: This class is abstract. Always create one of its subclasses.

Subpackages

preconditioners Package

preconditioners Package
class fipy.solvers.pysparse.preconditioners.JacobiPreconditioner
Bases: fipy.solvers.pysparse.preconditioners.preconditioner.Preconditioner

Jacobi preconditioner for PySparse. Really just a wrapper class for pysparse.precon.jacobi.

Create a Preconditioner object.
class fipy.solvers.pysparse.preconditioners.SsorPreconditioner
Bases: fipy.solvers.pysparse.preconditioners.preconditioner.Preconditioner

SSOR preconditioner for PySparse. Really just a wrapper class for pysparse.precon.jacobi.

Create a Preconditioner object.

jacobiPreconditioner Module
class fipy.solvers.pysparse.preconditioners. jacobiPreconditioner.JacobiPreconditioner
Bases: fipy.solvers.pysparse.preconditioners.preconditioner.Preconditioner

Jacobi preconditioner for PySparse. Really just a wrapper class for pysparse.precon.jacobi.

Create a Preconditioner object.

preconditioner Module
class fipy.solvers.pysparse.preconditioners.preconditioner.Preconditioner
Base preconditioner class

Attention: This class is abstract. Always create one of its subclasses.

Create a Preconditioner object.

23.5. Subpackages 247


http://pysparse.sourceforge.net

FiPy Manual, Release 3.1

ssorPreconditioner Module
class fipy.solvers.pysparse.preconditioners.ssorPreconditioner.SsorPreconditioner
Bases: fipy.solvers.pysparse.preconditioners.preconditioner.Preconditioner

SSOR preconditioner for PySparse. Really just a wrapper class for pysparse.precon.jacobi.

Create a Preconditioner object.

23.5.3 scipy Package

scipy Package
fipy.solvers.scipy.DefaultSolver
alias of LinearLUSolver

fipy.solvers.scipy.DummySolver
alias of LinearGMRESSolver

fipy.solvers.scipy.DefaultAsymmetricSolver
alias of LinearLUSolver

fipy.solvers.scipy.GeneralSolver
alias of LinearLUSolver

class fipy.solvers.scipy.LinearCGSSolver (tolerance=1e-15, iterations=2000, precon=None)
Bases: fipy.solvers.scipy.scipyKrylovSolver._ScipyKrylovSolver

The LinearCGSSolver is an interface to the CGS solver in Scipy, with no preconditioning by default.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* precon: Preconditioner to use.

class fipy.solvers.scipy.LinearGMRESSolver (folerance=1e-15, iterations=2000, pre-

con=None)
Bases: fipy.solvers.scipy.scipyKrylovSolver._ScipyKrylovSolver

The LinearGMRESSolver is an interface to the GMRES solver in Scipy, with no preconditioning by default.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* precon: Preconditioner to use.

class fipy.solvers.scipy.LinearBicgstabSolver
Bases: fipy.solvers.scipy.scipyKrylovSolver._ScipyKrylovSolver

The LinearBicgstabSolver is an interface to the Bicgstab solver in Scipy, with no preconditioning by default.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use.
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class fipy.solvers.scipy.LinearLUSolver (folerance=1e-10, iterations=1000, precon=None)
Bases: fipy.solvers.scipy.scipySolver._ScipySolver

The LinearLUSolver solves a linear system of equations using LU-factorisation. The LinearLUSolver is a
wrapper class for the the Scipy scipy.sparse.linalg.splu moduleq.

Create a Solver object.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.
* precon: Preconditioner to use. This parameter is only available for Trilinos solvers.

class fipy.solvers.scipy.LinearPCGSolver (tolerance=1e-15, iterations=2000, precon=None)
Bases: fipy.solvers.scipy.scipyKrylovSolver._ScipyKrylovSolver

The LinearPCGSolver is an interface to the CG solver in Scipy, with no preconditioning by default.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use.

linearBicgstabSolver Module
class fipy.solvers.scipy.linearBicgstabSolver.LinearBicgstabSolver
Bases: fipy.solvers.scipy.scipyKrylovSolver._ScipyKrylovSolver
The LinearBicgstabSolver is an interface to the Bicgstab solver in Scipy, with no preconditioning by default.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use.

linearCGSSolver Module

class fipy.solvers.scipy.linearCGSSolver.LinearCGSSolver (tolerance=1e-15, itera-

tions=2000, precon=None)
Bases: fipy.solvers.scipy.scipyKrylovSolver._ScipyKrylovSolver

The LinearCGSSolver is an interface to the CGS solver in Scipy, with no preconditioning by default.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use.
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linearGMRESSolver Module

class fipy.solvers.scipy.linearGMRESSolver.LinearGMRESSolver (tolerance=1e-15,
iterations=2000,

precon=None)
Bases: fipy.solvers.scipy.scipyKrylovSolver._ScipyKrylovSolver

The LinearGMRESSolver is an interface to the GMRES solver in Scipy, with no preconditioning by default.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use.

linearLUSolver Module

class fipy.solvers.scipy.linearLUSolver.LinearLUSolver (tolerance=1e-10, itera-

tions=1000, precon=None)
Bases: fipy.solvers.scipy.scipySolver._ScipySolver

The LinearLUSolver solves a linear system of equations using LU-factorisation. The LinearLUSolver is a
wrapper class for the the Scipy scipy.sparse.linalg.splu moduleq.

Create a Solver object.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use. This parameter is only available for Trilinos solvers.

linearPCGSolver Module

class fipy.solvers.scipy.linearPCGSolver.LinearPCGSolver (folerance=Ie-15, itera-

tions=2000, precon=None)
Bases: fipy.solvers.scipy.scipyKrylovSolver._ScipyKrylovSolver

The LinearPCGSolver is an interface to the CG solver in Scipy, with no preconditioning by default.
Parameters
* tolerance: The required error tolerance.
* iterations: The maximum number of iterative steps to perform.

* precon: Preconditioner to use.
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scipyKrylovSolver Module
scipySolver Module

23.5.4 trilinos Package
trilinos Package
linearBicgstabSolver Module
linearCGSSolver Module
linearGMRESSolver Module
linearLUSolver Module
linearPCGSolver Module
trilinosAztecOOSolver Module
trilinosMLTest Module
trilinosNonlinearSolver Module
trilinosSolver Module
Subpackages

preconditioners Package

preconditioners Package
domDecompPreconditioner Module
icPreconditioner Module
jacobiPreconditioner Module
multilevelDDMLPreconditioner Module
multilevelDDPreconditioner Module
multilevelNSSAPreconditioner Module
multilevelSAPreconditioner Module

multilevelSGSPreconditioner Module

23.5. Subpackages
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multilevelSolverSmootherPreconditioner Module

preconditioner Module
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steppers Package

24.1 steppers Package

fipy.steppers.Llerror (var, matrix, RHSvector)
Parameters
* var: The CellVariable in question.
* matrix: (ignored)
* RHSvector: (ignored)
Returns

|var — var®d|,

[[varod|,

where ||Z||; is the L!-norm of Z.
fipy.steppers.L2error (var, matrix, RHSvector)
Parameters
* var: The CellVariable in question.
* matrix: (ignored)
* RHSvector: (ignored)
Returns

|[var — var®d||,

[[varod2

where ||#]|2 is the L?-norm of Z.
fipy.steppers.LINFerror (var, matrix, RHSvector)

Parameters

* var: The CellVariable in question.

* matrix: (ignored)

* RHSvector: (ignored)
Returns

|var — var®d||

[[varodo

where || 7|« is the L>°-norm of &.
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fipy.steppers.sweepMonotonic (fn, *args, **kwargs)
Repeatedly calls fn (xargs, =+kwargs) () until the residual returned by £n () is no longer decreasing.

Parameters
e fn: The function to call
* args: The unnamed function argument /ist
* kwargs: The named function argument dict

Returns the final residual

24.2 pidstepper Module

class fipy.steppers.pidStepper.PIDStepper (vardata=(), proportional=0.075, integral=0.175,
derivative=0.01)
Bases: fipy.steppers.stepper.Stepper

Adaptive stepper using a PID controller, based on:

@article{PIDpaper,
author = {A. M. P. Valli and G. F. Carey and A. L. G. A. Coutinho},

title = {Control strategies for timestep selection in finite element
simulation of incompressible flows and coupled
reaction-convection-diffusion processes},

journal = {Int. J. Numer. Meth. Fluids},
volume = 47,

year = 2005,

pages = {201-231},

24.3 pseudoRKQSStepper Module

class fipy.steppers.pseudoRKQSStepper .PseudoRKQSStepper (vardata=(), safety=0.9,
pgrow=-0.2, pshrink=-0.25,

errcon=0.000189)
Bases: fipy.steppers.stepper.Stepper

Adaptive stepper based on the rkgs (Runge-Kutta “quality-controlled” stepper) algorithm of numerixal Recipes
in C: 2nd Edition, Section 16.2.

Not really appropriate, since we’re not doing Runge-Kutta steps in the first place, but works OK.

24.4 stepper Module
class fipy.steppers.stepper.Stepper (vardata=())

static failFn (vardata, dt, *args, **kwargs)

step (dt, dtTry=None, dtMin=None, dtPrev=None, sweepFn=None, successFn=None, failFn=None,
*args, **kwargs)

static successFn (vardata, dt, dtPrev, elapsed, *args, **kwargs)

static sweepFn (vardata, dt, *args, **kwargs)
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terms Package

25.1 terms Package

exception fipy.terms.ExplicitVariableError (s='Terms with explicit Variables cannot mix with

Terms with implicit Variables.”)
Bases: exceptions.Exception

exception fipy.terms.TermMultiplyError (s="Must multiply terms by int or float.”)
Bases: exceptions.Exception

exception fipy.terms.AbstractBaseClassError (s="can’t instantiate abstract base class”)
Bases: exceptions.NotImplementedError

exception fipy.terms.VectorCoeffError (s='The coefficient must be a vector value.”)
Bases: exceptions.TypeError

exception fipy.terms.SolutionVariableNumberError (s=’Different number of solution variables

and equations.”)
Bases: exceptions.Exception

exception fipy.terms.SolutionVariableRequiredError (s='The solution variable needs to be
specified.’)
Bases: exceptions.Exception

exception fipy.terms.IncorrectSolutionVariable (s='The solution variable is incorrect.”)
Bases: exceptions.Exception

fipy.terms.ConvectionTerm
alias of PowerLawConvectionTerm

class fipy.terms.FirstOrderAdvectionTerm (coeff=None)
Bases: fipy.terms.nonDiffusionTerm._NonDiffusionTerm

The FirstOrderAdvectionTerm object constructs the b vector contribution for the advection term given by
ulVel
from the advection equation given by:

9
ot

The construction of the gradient magnitude term requires upwinding. The formula used here is given by:

+ min (up,0 [Zmax( —or 0) 1

+ulVe| =0

1/2 1/2

dAP dAP

up|Vé|p = max (up,0 [Zm1n(¢A_¢P )

Here are some simple test cases for this problem:
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>>> from fipy.meshes import GridlD

>>> from fipy.solvers import x

>>> SparseMatrix = LinearLUSolver () ._matrixClass

>>> mesh = GridlD(dx = 1., nx = 3)

>>> from fipy.variables.cellVariable import CellVariable

Trivial test:

>>> var = CellVariable(value = numerix.zeros (3, ’'d’), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(0.)._buildMatrix (var, SparseMatrix)
>>> print numerix.allclose (b, numerix.zeros(3, ’'d’), atol = 1le-10)

True

Less trivial test:

>>> var = CellVariable(value = numerix.arange (3), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(l.)._buildMatrix (var, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((0., -1., -1.)), atol = 1le-10)
True

Even less trivial

>>> var = CellVariable(value = numerix.arange(3), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(-1.)._buildMatrix(var, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((l., 1., 0.)), atol = 1le-10)
True

Another trivial test case (more trivial than a trivial test case standing on a harpsichord singing ‘trivial test cases
are here again’)

>>> vel = numerix.array((-1, 2, -3))

>>> var = CellVariable(value = numerix.array((4,6,1)), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(vel) ._buildMatrix (var, SparseMatrix)

>>> print numerix.allclose (b, -vel % numerix.array((2, numerix.sqrt (5x+2 + 2xx2), 5)), atol = le
True

Somewhat less trivial test case:

>>> from fipy.meshes import Grid2D
>>> mesh = Grid2D(dx = 1., dy = 1., nx = 2, ny = 2)
>>> vel = numerix.array((3, -5, -6, —-3))

>>> var = CellVariable(value = numerix.array((3 , 1, 6, 7)), mesh = mesh)
>>> v, L, b = FirstOrderAdvectionTerm(vel)._buildMatrix (var, SparseMatrix)
>>> answer = -vel % numerix.array((2, numerix.sqrt(2xx2 + 6%%x2), 1, 0))
>>> print numerix.allclose (b, answer, atol = 1le-10)

True

class fipy.terms.AdvectionTerm (coeff=None)
Bases: fipy.terms.firstOrderAdvectionTerm.FirstOrderAdvectionTerm

The AdvectionTerm object constructs the b vector contribution for the advection term given by
ulVe
from the advection equation given by:

9¢
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The construction of the gradient magnitude term requires upwinding as in the standard FirstOrderAdvection-
Term. The higher order terms are incorperated as follows. The formula used here is given by:

1/2 1/2
up|Vo|p = max (up,0) Zmin (DAP,0)2 + min (up, 0) Zmax (DAP,O)2
A A
where,
$a—dp dap
Dap=——————m(La,Lp)
dap 2
and
m(z,y) =z  iffz] < [y/Vey =0
m(z,y) =y iffz] > [yVey =0
m(z,y) =0 ifxy <0
also,
I paa+ op —20a
A= 2
d
AP
I $a+opp —2¢p
P = 2
d
AP
Here are some simple test cases for this problem:
>>> from fipy.meshes import GridlD
>>> from fipy.solvers import =
>>> SparseMatrix = LinearPCGSolver () ._matrixClass

>>> mesh = GridlD(dx = 1., nx = 3)

Trivial test:

>>> from fipy.variables.cellVariable import CellVariable

>>> coeff = CellVariable (mesh = mesh, value = numerix.zeros (3, ’'d’))
>>> v, L, b = AdvectionTerm(0.)._buildMatrix(coeff, SparseMatrix)
>>> print numerix.allclose (b, numerix.zeros(3, ’'d’), atol = 1le-10)
True

Less trivial test:

>>> coeff = CellVariable(mesh = mesh, value = numerix.arange(3))

>>> v, L, b = AdvectionTerm(l.)._buildMatrix(coeff, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((0., -1., -1.)), atol = 1le-10)
True

Even less trivial

>>> coeff = CellVariable(mesh = mesh, value = numerix.arange(3))

>>> v, L, b = AdvectionTerm(-1.)._buildMatrix(coeff, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((l1., 1., 0.)), atol = 1le-10)
True

Another trivial test case (more trivial than a trivial test case standing on a harpsichord singing ‘trivial test cases
are here again’)

>>> vel = numerix.array((-1, 2, -3))
>>> coeff = CellVariable(mesh = mesh, value = numerix.array((4,6,1)))
>>> v, L, b = AdvectionTerm(vel)._buildMatrix(coeff, SparseMatrix)

>>> print numerix.allclose (b, -vel % numerix.array((2, numerix.sqrt (5x*2 + 2xx2), 5)),

True
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Somewhat less trivial test case:

>>> from fipy.meshes import Grid2D
>>> mesh = Grid2D(dx = 1., dy = 1., nx = 2, ny = 2)

>>> vel = numerix.array((3, -5, -6, -3))

>>> coeff = CellVariable(mesh = mesh, value = numerix.array((3 , 1, 6, 7)))
>>> v, L, b = AdvectionTerm(vel)._buildMatrix (coeff, SparseMatrix)

>>> answer = -vel x numerix.array((2, numerix.sqrt(2++2 + 6%x%2), 1, 0))

>>> print numerix.allclose (b, answer, atol = 1le-10)

True

For the above test cases the AdvectionTerm gives the same result as the AdvectionTerm. The following test
imposes a quadratic field. The higher order term can resolve this field correctly.

6 =2’
The returned vector b should have the value:
99
—|Vo| =—|=| =2z
V9l = — | 52| = ~2lal
Build the test case in the following way,
>>> mesh = GridlD(dx = 1., nx = 5)
>>> vel = 1.
>>> coeff = CellVariable (mesh = mesh, value = mesh.cellCenters[0]**2)
>>> v, L, b = _ AdvectionTerm(vel) ._buildMatrix(coeff, SparseMatrix)

The first order term is not accurate. The first and last element are ignored because they don’t have any neighbors
for higher order evaluation

>>> print numerix.allclose (CellVariable (mesh=mesh,
value=b) .globalValue[l:-1], -2 % mesh.cellCenters.globalValue[0O][1:-1])
False

The higher order term is spot on.

>>> v, L, b = AdvectionTerm(vel)._buildMatrix (coeff, SparseMatrix)
>>> print numerix.allclose (CellVariable (mesh=mesh,

value=b) .globalValue[l:-1], -2 * mesh.cellCenters.globalValue[0][1:-1])
True

The AdvectionTerm will also resolve a circular field with more accuracy,

¢ = (x2 + y2)1/2

Build the test case in the following way,

>>> mesh = Grid2D(dx = 1., dy = 1., nx = 10, ny = 10)

>>> vel = 1.

>>> x, y = mesh.cellCenters

>>> r = numerix.sqrt (xx*2 + y**2)

>>> coeff = CellVariable (mesh = mesh, value = r)

>>> v, L, b = _ AdvectionTerm(l.)._buildMatrix (coeff, SparseMatrix)
>>> error = CellVariable (mesh=mesh, value=b + 1)

>>> ans = CellVariable (mesh=mesh, value=b + 1)

>>> ans[(x > 2) & (x < 8) & (y > 2) & (y < 8)] = 0.123105625618
>>> print (error <= ans).all()
True

The maximum error is large (about 12 %) for the first order advection.
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>>> v, L, b = AdvectionTerm(l.)._buildMatrix(coeff, SparseMatrix)
>>> error = CellVariable (mesh=mesh, value=b + 1)

>>> ans = CellVariable (mesh=mesh, wvalue=b + 1)

>>> ans[(x > 2) & (x < 8) & (y > 2) & (y < 8)] = 0.0201715476598

>>> print (error <= ans).all()
True

The maximum error is 2 % when using a higher order contribution.

class fipy.terms.TransientTerm (coeff=1.0, var=None)
Bases: fipy.terms.cellTerm.CellTerm

The TransientTerm represents

/ A(po) AV ~ (ppor — pPlo3 ) Vp
oot At

where p is the coeff value.

The following test case verifies that variable coefficients and old coefficient values work correctly. We will solve

the following equation
o 2
99" _
ot

The analytic solution is given by

b =/ + kt,

where ¢ is the initial value.

>>> phi0 = 1.

>>> k = 1.

>>> dt = 1.

>>> relaxationFactor = 1.5
>>> steps = 2

>>> sweeps = 8

>>> from fipy.meshes import GridlD

>>> mesh = GridlD(nx = 1)
>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable (mesh = mesh, value = phi0O, hasOld = 1)

>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.implicitSourceTerm import ImplicitSourceTerm

Relaxation, given by relaxationFactor, is required for a converged solution.

>>> eq = TransientTerm(var) == ImplicitSourceTerm(-relaxationFactor)

+ var * relaxationFactor + k

A number of sweeps at each time step are required to let the relaxation take effect.

>>> for step in range (steps):
var.updateOld ()
for sweep in range (sweeps) :
eqg.solve(var, dt = dt)

Compare the final result with the analytical solution.
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>>> from fipy.tools import numerix
>>> print var.allclose (numerix.sqgrt(k = dt * steps + phiOxx2))
1

class fipy.terms.DiffusionTerm (coeff=(1.0, ), var=None)
Bases: fipy.terms.diffusionTermNoCorrection.DiffusionTermNoCorrection

This term represents a higher order diffusion term. The order of the term is determined by the number of coeffs,
such that:

DiffusionTerm(D1)

represents a typical 2nd-order diffusion term of the form
V- (D1V9)

and:

DiffusionTerm( (D1,D2))

represents a 4th-order Cahn-Hilliard term of the form
V-ADVI[V- (D2Vo)]}

and so on.

class fipy.terms.DiffusionTermCorrection (coeff=(1.0, ), var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm

class fipy.terms.DiffusionTermNoCorrection (coeff=(1.0, ), var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm

class fipy.terms.DiffusionTermCorrection (coeff=(1.0, ), var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm

class fipy.terms.DiffusionTermNoCorrection (coeff=(1.0, ), var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm

class fipy.terms.ExplicitDiffusionTerm (coeff=(1.0, ), var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm

The discretization for the ExplicitDiffusionTerm is given by

ol goid
(T dV ~ r—=—-—A
| v-wveav S A

AP

where ¢%® and ¢3¢ are the old values of the variable. The term is added to the RHS vector and makes no

contribution to the solution matrix.

fipy.terms.ImplicitDiffusionTerm
aliasof DiffusionTerm

class fipy.terms.ImplicitSourceTerm (coeff=0.0, var=None)
Bases: fipy.terms.sourceTerm.SourceTerm

The ImplicitSourceTerm represents

/ ¢S dV ~ ¢pSpVp
v

where S is the coeff value.
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class fipy.terms.ResidualTerm (equation, underRelaxation=1.0)
Bases: fipy.terms.explicitSourceTerm._ExplicitSourceTerm

The ResidualTerm is a special form of explicit SourceTerm that adds the residual of one equation to another
equation. Useful for Newton’s method.

class fipy.terms.CentralDifferenceConvectionTerm (coeff=1.0, var=None)
Bases: fipy.terms.abstractConvectionTerm._AbstractConvectionTerm

This Term represents
[ V) av = 3 oAy
f

where ¢y = aydpp + (1 —ay)da and oy is calculated using the central differencing scheme. For further details
see Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =

>>> m = GridlD(nx = 2)
>>> cv = CellVariable (mesh = m)
>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ O., 0., 0.1]), mesh=Unifor
>>> _ ConvectionTerm (coeff = vfv)
__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0.1]1), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm (coeff=(1,))
>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())
Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)
>>> vcv2 = CellVariable (mesh=m2, rank=1)
>>> vfv2 = FaceVariable (mesh=m2, rank=1)
>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0., 0., 0., 0.,
[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm(coeff=vfv2)
__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0., 0., 0., 0., 0.1,
[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
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>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS
Parameters

* coeff : The Term*s coefficient value.

class fipy.terms.ExplicitUpwindConvectionTerm (coeff=1.0, var=None)

Bases: fipy.terms.abstractUpwindConvectionTerm._AbstractUpwindConvectionTerm

The discretization for this Term is given by

/V V- (iig)dV ~ S (it i) ;65 Ay
f

where ¢5 = a;¢% + (1 — ayr)¢% and oy is calculated using the upwind scheme. For further details see
Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =
>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh = m)
>>> fv = FaceVariable (mesh = m)
>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)

Traceback (most recent call last):
VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array ([[ 0., 0., 0.1]1), mesh=Unifor
>>> _ ConvectionTerm(coeff = vfv)
__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0.1]1), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

__ ConvectionTerm (coeff=(1,))
>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())
Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)

>>> vcv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)

__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0., 0., 0., 0.,
ro., 0., 0., 0., 0., 0., 0.11), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))

>>> _ ConvectionTerm(coeff=vfv2)
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__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0., 0., 0., 0., 0.1,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term's coefficient value.

class fipy.terms.ExponentialConvectionTerm (coeff=1.0, var=None)
Bases: fipy.terms.asymmetricConvectionTerm._AsymmetricConvectionTerm

The discretization for this Term is given by
[ v-@av = 36054,
1%
f

where ¢y = aypp + (1 — ay)p4 and oy is calculated using the exponential scheme. For further details see
Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =x

>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh = m)

>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.

>>> _ ConvectionTerm (coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array ([[ 0., 0., 0.1]), mesh=Unifor
>>> _ ConvectionTerm(coeff = vfv)
__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0.11), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm(coeff=(1,))
>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())
Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm (coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.

>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)

>>> vcv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ O., 0., 0., 0., 0., 0.,
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[ 0., 0., 0., 0., 0., 0., 0.11), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1l)))
>>> _ ConvectionTerm(coeff=vfv2)
__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0., 0., 0., 0., 0.1,

[ o., 0., 0., 0., 0., 0., 0.11), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term*s coefficient value.

class fipy.terms.HybridConvectionTerm (coeff=1.0, var=None)

Bases: fipy.terms.asymmetricConvectionTerm._AsymmetricConvectionTerm

The discretization for this Term is given by
[ v-@av = 30054,
1%
f

where ¢ = arpp+(1—ay)pa and ay is calculated using the hybrid scheme. For further details see Numerical
Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =

>>> m = GridlD (nx = 2)

>>> cv = CellVariable (mesh = m)

>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0.1]), mesh=Unifor
>>> _ ConvectionTerm(coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0.]1), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm (coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)
>>> vcv2 = CellVariable (mesh=m2, rank=1)
>>> vfv2 = FaceVariable (mesh=m2, rank=1)
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>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array ([[ 0., 0., 0., 0., 0., 0.,

[ 0., 0., 0., 0., 0., 0., 0.]]1), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm (coeff=vfv2)

__ConvectionTerm(coeff=FacevVariable (value=array([([ 0., ©0., O0., 0., 0., 0., 0.1,

[ 0., 0., 0., 0., 0., 0., 0.]]1), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term*s coefficient value.
class fipy.terms.PowerLawConvectionTerm (coeff=1.0, var=None)
Bases: fipy.terms.asymmetricConvectionTerm._AsymmetricConvectionTerm

The discretization for this Term is given by

/V V- (iig)dV ~ S (it i) ;65 Ay
f

where ¢r = asdpp + (1 — ay)pa and oy is calculated using the power law scheme. For further details see
Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =«
>>> m = GridlD(nx = 2)
>>> cv = CellVariable (mesh = m)
>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)

Traceback (most recent call last):
VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0.1]1), mesh=Unifor
>>> _ ConvectionTerm (coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0.1]), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm (coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.
>>> m2 = Grid2D (nx=2, ny=1)
>>> cv2 = CellVariable (mesh=m2)
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>>> vcv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ O., 0., 0., 0., 0., 0.,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm (coeff=vfv2)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0., 0., 0., 0., 0.1,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term's coefficient value.

class fipy.terms.UpwindConvectionTerm (coeff=1.0, var=None)

Bases: fipy.terms.abstractUpwindConvectionTerm._AbstractUpwindConvectionTerm

The discretization for this Term is given by
[ v-@av = 36054,
14
f

where ¢y = aypp + (1 — ay)pa and ay is calculated using the upwind convection scheme. For further details
see Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =«

>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh = m)

>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array ([[ 0., 0., 0.1]), mesh=Unifor
>>> _ ConvectionTerm (coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0.11), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm (coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm (coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
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>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)

>>> ycv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0., 0., 0., 0.,

[ o., 0., 0., 0., 0., 0., 0.11), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm (coeff=vfv2)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0., 0., 0., 0., 0.1,

[ 0., 0., 0., 0., 0., 0., 0.11), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1l)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term*s coefficient value.

class fipy.terms.VanLeerConvectionTerm (coeff=1.0, var=None)
Bases: fipy.terms.explicitUpwindConvectionTerm.ExplicitUpwindConvectionTerm

Create a _AbstractConvectionTerm object.

>>> from fipy import =x

>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh = m)

>>> fv = FaceVariable (mesh = m)

>>> yvcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array ([[ 0., 0., 0.1]), mesh=Unifor
>>> _ ConvectionTerm(coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0.11), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm (coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)

>>> vcv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0., 0., 0., 0.,
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[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))

>>> _ ConvectionTerm(coeff=vfv2)
__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0., 0., 0., 0., 0.1,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term*s coefficient value.

class fipy.terms.FirstOrderAdvectionTerm (coeff=None)
Bases: fipy.terms.nonDiffusionTerm._NonDiffusionTerm

The FirstOrderAdvectionTerm object constructs the b vector contribution for the advection term given by
ulVol
from the advection equation given by:

o .
at

The construction of the gradient magnitude term requires upwinding. The formula used here is given by:

+ulVe| =0

1/2 1/2
up|V¢|p = max (up,0 Zmln <¢A_¢P 0) + min (up,0 Zmax (¢A_¢P 0)

dAp dAP

Here are some simple test cases for this problem:

>>> from fipy.meshes import GridlD

>>> from fipy.solvers import =«

>>> SparseMatrix = LinearLUSolver () ._matrixClass

>>> mesh = GridlD(dx = 1., nx = 3)

>>> from fipy.variables.cellVariable import CellVariable

Trivial test:

>>> var CellVariable (value = numerix.zeros (3, ’'d’), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(0.)._buildMatrix (var, SparseMatrix)
>>> print numerix.allclose (b, numerix.zeros(3, ’'d’), atol = 1le-10)

True

Less trivial test:

>>> var = CellVariable(value = numerix.arange (3), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(l.)._buildMatrix(var, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((0., -1., -1.)), atol = 1le-10)
True

Even less trivial

>>> var CellVariable (value = numerix.arange(3), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(-1.)._buildMatrix (var, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((l1., 1., 0.)), atol = 1le-10)
True

Another trivial test case (more trivial than a trivial test case standing on a harpsichord singing ‘trivial test cases
are here again’)
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>>> vel = numerix.array((-1, 2, -3))

>>> var = CellVariable(value = numerix.array((4,6,1)), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(vel) ._buildMatrix (var, SparseMatrix)

>>> print numerix.allclose (b, -vel % numerix.array((2, numerix.sqrt (5x+2 + 2xx2), 5)), atol = le
True

Somewhat less trivial test case:

>>> from fipy.meshes import Grid2D
>>> mesh = Grid2D(dx = 1., dy = 1., nx = 2, ny = 2)

>>> vel = numerix.array((3, -5, -6, —-3))

>>> var = CellVariable(value = numerix.array((3 , 1, 6, 7)), mesh = mesh)
>>> v, L, b = FirstOrderAdvectionTerm(vel) ._buildMatrix (var, SparseMatrix)
>>> answer = -vel % numerix.array((2, numerix.sqrt(2xx2 + 6%x2), 1, 0))
>>> print numerix.allclose (b, answer, atol = 1le-10)

True

class fipy.terms.AdvectionTerm (coeff=None)
Bases: fipy.terms.firstOrderAdvectionTerm.FirstOrderAdvectionTerm

The AdvectionTerm object constructs the b vector contribution for the advection term given by
ulVe
from the advection equation given by:

¢

ot
The construction of the gradient magnitude term requires upwinding as in the standard FirstOrderAdvection-
Term. The higher order terms are incorperated as follows. The formula used here is given by:

+ulVe| =0

1/2 1/2
up|Vo|p = max (up,0) z:min(DAp,O)2 + min (up, 0) ZmaX(DAp,O)2
A A

where,
da—o¢p dap
Dap = ——————m(La,Lp)
dap 2
and
m(z,y) == if 2| < |y[Vey =0
m(z,y) =y  iffz] > |y[Vey =0
m(z,y) =0 ifay <0
also,
I paa+ dp —2¢a
A= 2
d
AP
I $a+ dpp —20p
P = 2
d
AP
Here are some simple test cases for this problem:
>>> from fipy.meshes import GridlD
>>> from fipy.solvers import =
>>> SparseMatrix = LinearPCGSolver () ._matrixClass

>>> mesh = GridlD(dx = 1., nx = 3)

Trivial test:
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>>> from fipy.variables.cellVariable import CellVariable

>>> coeff = CellVariable (mesh = mesh, value = numerix.zeros (3, ’'d’))
>>> v, L, b = AdvectionTerm(0.)._buildMatrix(coeff, SparseMatrix)
>>> print numerix.allclose (b, numerix.zeros(3, ’'d’), atol = 1le-10)
True

Less trivial test:

>>> coeff = CellVariable (mesh = mesh, value = numerix.arange(3))

>>> v, L, b = AdvectionTerm(l.)._buildMatrix(coeff, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((0., -1., -1.)), atol = 1le-10)
True

Even less trivial

>>> coeff = CellVariable (mesh = mesh, value = numerix.arange(3))

>>> v, L, b = AdvectionTerm(-1.)._buildMatrix(coeff, SparseMatrix)

>>> print numerix.allclose (b, numerix.array((l1., 1., 0.)), atol = 1le-10)
True

Another trivial test case (more trivial than a trivial test case standing on a harpsichord singing ‘trivial test cases
are here again’)

>>> vel = numerix.array((-1, 2, -3))

>>> coeff = CellVariable(mesh = mesh, value = numerix.array((4,6,1)))

>>> v, L, b = AdvectionTerm(vel)._buildMatrix (coeff, SparseMatrix)

>>> print numerix.allclose (b, -vel % numerix.array((2, numerix.sqrt (5x+x2 + 2xx2), 5)), atol = le
True

Somewhat less trivial test case:

>>> from fipy.meshes import Grid2D
>>> mesh = Grid2D(dx = 1., dy = 1., nx = 2, ny = 2)

>>> vel = numerix.array((3, -5, -6, —-3))

>>> coeff = CellVariable (mesh = mesh, value = numerix.array((3 , 1, 6, 7)))
>>> v, L, b = AdvectionTerm(vel) ._buildMatrix(coeff, SparseMatrix)

>>> answer = -vel % numerix.array((2, numerix.sqrt(2xx2 + 6%x%x2), 1, 0))

>>> print numerix.allclose (b, answer, atol = 1le-10)

True

For the above test cases the AdvectionTerm gives the same result as the AdvectionTerm. The following test
imposes a quadratic field. The higher order term can resolve this field correctly.

6= a?
The returned vector b should have the value:
99
— V¢l =— | == | = —2Jz
V9l = — | 52| = ~2lal
Build the test case in the following way,
>>> mesh = GridlD(dx = 1., nx = 5)
>>> vel = 1.
>>> coeff = CellVariable (mesh = mesh, value = mesh.cellCenters[0]**2)
>>> v, L, b = _ AdvectionTerm(vel) ._buildMatrix (coeff, SparseMatrix)

The first order term is not accurate. The first and last element are ignored because they don’t have any neighbors
for higher order evaluation
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>>> print numerix.allclose(CellVariable (mesh=mesh,
value=b) .globalValue[l:-1], -2 * mesh.cellCenters.globalValue[0][1:-1])
False

The higher order term is spot on.

>>> v, L, b = AdvectionTerm(vel)._buildMatrix (coeff, SparseMatrix)
>>> print numerix.allclose (CellVariable (mesh=mesh,

value=b) .globalValue[l:-1], -2 * mesh.cellCenters.globalValue[0][1:-1])
True

The AdvectionTerm will also resolve a circular field with more accuracy,

¢ = (332 —|—y2)1/2

Build the test case in the following way,

>>> mesh = Grid2D(dx = 1., dy = 1., nx = 10, ny = 10)

>>> vel = 1.

>>> x, y = mesh.cellCenters

>>> r = numerix.sqrt (xx*2 + y**2)

>>> coeff = CellVariable (mesh = mesh, value = r)

>>> v, L, b = _ AdvectionTerm(l.)._buildMatrix(coeff, SparseMatrix)
>>> error = CellVariable (mesh=mesh, value=b + 1)

>>> ans = CellVariable (mesh=mesh, value=b + 1)

>>> ans[(x > 2) & (x < 8) & (y > 2) & (y < 8)] = 0.123105625618
>>> print (error <= ans).all()

True

The maximum error is large (about 12 %) for the first order advection.

>>> v, L, b = AdvectionTerm(l.)._buildMatrix(coeff, SparseMatrix)
>>> error = CellVariable (mesh=mesh, value=b + 1)

>>> ans = CellVariable (mesh=mesh, value=b + 1)

>>> ans[(x > 2) & (x < 8) & (y > 2) & (y < 8)] = 0.0201715476598
>>> print (error <= ans).all()

True

The maximum error is 2 % when using a higher order contribution.

25.2 abstractBinaryTerm Module

25.3 abstractConvectionTerm Module

25.4 abstractDiffusionTerm Module

25.5 abstractUpwindConvectionTerm Module

25.6 advectionTerm Module

class fipy.terms.advectionTerm.AdvectionTerm (coeff=None)
Bases: fipy.terms.firstOrderAdvectionTerm.FirstOrderAdvectionTerm
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The AdvectionTerm object constructs the b vector contribution for the advection term given by
ulVe
from the advection equation given by:

09 B
Eﬁ'+1”‘7¢|——0

The construction of the gradient magnitude term requires upwinding as in the standard FirstOrderAdvection-
Term. The higher order terms are incorperated as follows. The formula used here is given by:

1/2 1/2
up|Veo|p = max (up,0) Zmin(DAp,0)2 + min (up,0) Zmax(DAp,O)Q
A A

where,
$a—op dap
Dap=22"0F _CAP 0 (LA, Lp)
dap 2
and
m(z,y) ==  if [z| < |y|Vey >0
m(z,y) =y  iffz| > |y[Vey > 0
(x,y) =0 ifey <0
also,
¢paa+ op — 204
La= 5
d
AP
$a+ dpp —20p
Lp = 5
d
AP
Here are some simple test cases for this problem:
>>> from fipy.meshes import GridlD
>>> from fipy.solvers import x
>>> SparseMatrix = LinearPCGSolver () ._matrixClass

>>> mesh = GridlD(dx = 1., nx = 3)

Trivial test:

>>> from fipy.variables.cellVariable import CellVariable
>>> coeff = CellVariable (mesh = mesh, value = numerix.zeros (3, ’'d’))

>>> v, L, b = AdvectionTerm(0.)._buildMatrix (coeff, SparseMatrix)
>>> print numerix.allclose (b, numerix.zeros(3, ’'d’), atol = 1le-10)
True

Less trivial test:

>>> coeff = CellVariable(mesh = mesh, value = numerix.arange(3))

>>> v, L, b = AdvectionTerm(l.)._buildMatrix(coeff, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((0., -1., -1.)), atol = 1le-10)
True

Even less trivial

>>> coeff = CellVariable(mesh = mesh, value = numerix.arange(3))

>>> v, L, b = AdvectionTerm(-1.)._buildMatrix(coeff, SparseMatrix)

>>> print numerix.allclose (b, numerix.array((l., 1., 0.)), atol = 1le-10)
True
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Another trivial test case (more trivial than a trivial test case standing on a harpsichord singing ‘trivial test cases
are here again’)

>>> vel = numerix.array((-1, 2, -3))

>>> coeff = CellVariable(mesh = mesh, value = numerix.array((4,6,1)))

>>> v, L, b = AdvectionTerm(vel)._buildMatrix (coeff, SparseMatrix)

>>> print numerix.allclose (b, -vel % numerix.array((2, numerix.sqrt (5x+x2 + 2xx2), 5)), atol = le
True

Somewhat less trivial test case:

>>> from fipy.meshes import Grid2D

>>> mesh = Grid2D(dx = 1., dy = 1., nx = 2, ny = 2)

>>> vel = numerix.array((3, -5, -6, —-3))

>>> coeff = CellVariable(mesh = mesh, value = numerix.array((3 , 1, 6, 7)))
>>> v, L, b = AdvectionTerm(vel) ._buildMatrix(coeff, SparseMatrix)

>>> answer = -vel x numerix.array((2, numerix.sqrt(2++2 + 6%x%2), 1, 0))
>>> print numerix.allclose (b, answer, atol = 1le-10)
True

For the above test cases the AdvectionTerm gives the same result as the AdvectionTerm. The following test
imposes a quadratic field. The higher order term can resolve this field correctly.

¢ =a’
The returned vector b should have the value:
99
—|Vo| =—|=| =2z
V6l = — 52| = ~2lal
Build the test case in the following way,
>>> mesh = GridlD(dx = 1., nx = 5)
>>> vel = 1.
>>> coeff = CellVariable (mesh = mesh, value = mesh.cellCenters[0]**2)
>>> v, L, b = _ AdvectionTerm(vel) ._buildMatrix (coeff, SparseMatrix)

The first order term is not accurate. The first and last element are ignored because they don’t have any neighbors
for higher order evaluation

>>> print numerix.allclose(CellVariable (mesh=mesh,
value=b) .globalValue[l:-1], -2 * mesh.cellCenters.globalValue[0][1:-1])
False

The higher order term is spot on.

>>> v, L, b = AdvectionTerm(vel) ._buildMatrix(coeff, SparseMatrix)
>>> print numerix.allclose (CellVariable (mesh=mesh,

value=b) .globalValue[l:-1], -2 % mesh.cellCenters.globalValue[0O][1:-1])
True

The AdvectionTerm will also resolve a circular field with more accuracy,

¢ = (xz + y2)1/2

Build the test case in the following way,

>>> mesh = Grid2D(dx = 1., dy = 1., nx = 10, ny = 10)

>>> vel = 1.
>>> x, y = mesh.cellCenters
>>> r = numerix.sqrt (xx*2 + y*x*2)
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>>> coeff = CellVariable (mesh = mesh, value = r)

>>> v, L, b = _ AdvectionTerm(l.)._buildMatrix(coeff, SparseMatrix)
>>> error = CellVariable (mesh=mesh, value=b + 1)

>>> ans = CellVariable (mesh=mesh, value=b + 1)

>>> ans[(x > 2) & (x < 8) & (y > 2) & (y < 8)] = 0.123105625618
>>> print (error <= ans).all()

True

The maximum error is large (about 12 %) for the first order advection.

>>> v, L, b = AdvectionTerm(l.)._buildMatrix(coeff, SparseMatrix)
>>> error = CellVariable (mesh=mesh, value=b + 1)

>>> ans = CellVariable (mesh=mesh, value=b + 1)

>>> ans[(x > 2) & (x < 8) & (y > 2) & (y < 8)] = 0.0201715476598
>>> print (error <= ans).all()

True

The maximum error is 2 % when using a higher order contribution.

25.7 asymmetricConvectionTerm Module
25.8 binaryTerm Module

25.9 cellTerm Module

class fipy.terms.cellTerm.CellTerm (coeff=1.0, var=None)
Bases: fipy.terms.nonDiffusionTerm._NonDiffusionTerm

Attention: This class is abstract. Always create one of its subclasses.

25.10 centralDiffConvectionTerm Module

class fipy.terms.centralDiffConvectionTerm.CentralDifferenceConvectionTerm (coeff=1.0,

var=None)
Bases: fipy.terms.abstractConvectionTerm._AbstractConvectionTerm

This Term represents
[ v @) v = 3 oy
f

where ¢5 = arpp+ (1 — af)pa and o is calculated using the central differencing scheme. For further details
see Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =«

>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh m)

>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
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>>> _ ConvectionTerm(coeff = cv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ O., 0., 0.1]), mesh=Unifor
>>> _ ConvectionTerm(coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0.11), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm (coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)
>>> vcv2 = CellVariable (mesh=m2, rank=1)
>>> vfv2 = FaceVariable (mesh=m2, rank=1)
>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0., 0., 0., 0.,
[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm (coeff=vfv2)
__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0., 0., 0., 0., 0.1,
[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term's coefficient value.

25.11 coupledBinaryTerm Module

25.12 diffusionTerm Module

class fipy.terms.diffusionTerm.DiffusionTerm (coeff=(1.0, ), var=None)
Bases: fipy.terms.diffusionTermNoCorrection.DiffusionTermNoCorrection

This term represents a higher order diffusion term. The order of the term is determined by the number of coeffs,
such that:

DiffusionTerm(D1)

represents a typical 2nd-order diffusion term of the form

V- (D1V9¢)
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and:

DiffusionTerm( (D1,D2))
represents a 4th-order Cahn-Hilliard term of the form
V-ADV[V- (D2V9)]}

and so on.

class fipy.terms.diffusionTerm.DiffusionTermCorrection (coeff=(1.0, ), var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm

class fipy.terms.diffusionTerm.DiffusionTermNoCorrection (coeff=(1.0, ), var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm

25.13 diffusionTermCorrection Module

class fipy.terms.diffusionTermCorrection.DiffusionTermCorrection (coeff=(1.0, ),

var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm

25.14 diffusionTermNoCorrection Module

class fipy.terms.diffusionTermNoCorrection.DiffusionTermNoCorrection (coeff=(1.0,

),
var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm
25.15 explicitDiffusionTerm Module
class fipy.terms.explicitDiffusionTerm.ExplicitDiffusionTerm (coeff=(1.0, ),

var=None)
Bases: fipy.terms.abstractDiffusionTerm._AbstractDiffusionTerm

The discretization for the ExplicitDiffusionTerm is given by

old _ old
/ V- (TV)dV ~ erMAf
v 7 dap

where ¢%¢ and ¢\ are the old values of the variable. The term is added to the RHS vector and makes no

contribution to the solution matrix.

25.16 explicitSourceTerm Module

25.17 explicitUpwindConvectionTerm Module

class fipy.terms.explicitUpwindConvectionTerm.ExplicitUpwindConvectionTerm (coeff=1.0,

var=None)
Bases: fipy.terms.abstractUpwindConvectionTerm._AbstractUpwindConvectionTerm
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The discretization for this Term is given by
| v-@av =364,
1%
f

where ¢5 = a;¢% + (1 — ay)¢% and oy is calculated using the upwind scheme. For further details see
Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =

>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh = m)

>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)

Traceback (most recent call last):
VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0.1]1), mesh=Unifor
>>> _ ConvectionTerm (coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0.11), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm (coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)

>>> vcv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0., 0., 0., 0.,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm (coeff=vfv2)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0., 0., 0., 0., 0.1,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term*s coefficient value.
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25.18 exponentialConvectionTerm Module

class fipy.terms.exponentialConvectionTerm.ExponentialConvectionTerm (coeff=1.0,

var=None)
Bases: fipy.terms.asymmetricConvectionTerm._AsymmetricConvectionTerm

The discretization for this Term is given by
| V@ = Yo,
1%
f

where ¢y = aydp + (1 — af)pa and a is calculated using the exponential scheme. For further details see
Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =«

>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh = m)

>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0.1]1), mesh=Unifor
>>> _ ConvectionTerm(coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0.1]1), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm(coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.

>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv,

solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)
>>> vcv2 = CellVariable (mesh=m2, rank=1)
>>> vfv2 = FaceVariable (mesh=m2, rank=1)
>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array ([[ 0., 0., 0., 0., 0., 0.,
[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm (coeff=vfv2)
__ ConvectionTerm(coeff=FacevVariable (value=array([([ 0., ©0., O0., 0., 0., 0., 0.1,
[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))).solve(var=cv2, solver=DummyS
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Parameters

* coeff : The Term*s coefficient value.

25.19 faceTerm Module

class fipy.terms.faceTerm.FaceTerm (coeff=1.0, var=None)
Bases: fipy.terms.nonDiffusionTerm._NonDiffusionTerm

Attention: This class is abstract. Always create one of its subclasses.

25.20 firstOrderAdvectionTerm Module

class fipy.terms.firstOrderAdvectionTerm.FirstOrderAdvectionTerm (coeff=None)
Bases: fipy.terms.nonDiffusionTerm._NonDiffusionTerm

The FirstOrderAdvectionTerm object constructs the b vector contribution for the advection term given by
ulVol
from the advection equation given by:

9

The construction of the gradient magnitude term requires upwinding. The formula used here is given by:

p 1/2 ¢ 1/2
P P

up|Vo|p = max (up min 0 + min (up max ,0

vl 0|3 (%22 0) 0| S (Z

Here are some simple test cases for this problem:

>>> from fipy.meshes import GridlD

>>> from fipy.solvers import =

>>> SparseMatrix = LinearLUSolver () ._matrixClass

>>> mesh = GridlD(dx = 1., nx 3)
>>> from fipy.variables.cellVariable import CellVariable

Trivial test:

>>> var = CellVariable(value = numerix.zeros (3, ’'d’), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(0.)._buildMatrix(var, SparseMatrix)
>>> print numerix.allclose (b, numerix.zeros(3, ’'d’), atol = 1le-10)

True

Less trivial test:

>>> var = CellVariable(value = numerix.arange (3), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(l.)._buildMatrix(var, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((0., -1., -1.)), atol = 1le-10)
True

Even less trivial
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>>> var = CellVariable(value = numerix.arange(3), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(-1.)._buildMatrix (var, SparseMatrix)
>>> print numerix.allclose (b, numerix.array((l1., 1., 0.)), atol = 1le-10)
True

Another trivial test case (more trivial than a trivial test case standing on a harpsichord singing ‘trivial test cases
are here again’)

>>> vel = numerix.array((-1, 2, -3))

>>> var = CellVariable(value = numerix.array((4,6,1)), mesh = mesh)

>>> v, L, b = FirstOrderAdvectionTerm(vel)._buildMatrix(var, SparseMatrix)

>>> print numerix.allclose (b, -vel % numerix.array((2, numerix.sqrt (5x+x2 + 2xx2), 5)), atol = le
True

Somewhat less trivial test case:

>>> from fipy.meshes import Grid2D
>>> mesh = Grid2D(dx = 1., dy = 1., nx = 2, ny = 2)

>>> vel = numerix.array((3, -5, -6, —3))

>>> var = CellVariable(value = numerix.array((3 , 1, 6, 7)), mesh = mesh)
>>> v, L, b = FirstOrderAdvectionTerm(vel) ._buildMatrix (var, SparseMatrix)
>>> answer = -vel % numerix.array((2, numerix.sqrt(2xx2 + 6%%x2), 1, 0))
>>> print numerix.allclose (b, answer, atol = 1le-10)

True

25.21 hybridConvectionTerm Module

class fipy.terms.hybridConvectionTerm.HybridConvectionTerm (coeff=1.0, var=None)
Bases: fipy.terms.asymmetricConvectionTerm._AsymmetricConvectionTerm

The discretization for this Term is given by
| V@ = Yo,
1%
f

where ¢y = aydp+(1—ayf)p4 and ay is calculated using the hybrid scheme. For further details see Numerical
Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =«

>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh = m)

>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.

>>> _ ConvectionTerm (coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0.1]), mesh=Unifor
>>> _ ConvectionTerm(coeff = vfv)
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__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0.11), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm(coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)

>>> vcv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)

__ ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array ([[ 0., 0., 0., 0., 0., 0.,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm (coeff=vfv2)

__ ConvectionTerm(coeff=FacevVariable (value=array([([ 0., ©0., O0., 0., 0., 0., 0.1,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term's coefficient value.

25.22 implicitDiffusionTerm Module

fipy.terms.implicitDiffusionTerm.ImplicitDiffusionTerm
aliasof DiffusionTerm

25.23 implicitSourceTerm Module

class fipy.terms.implicitSourceTerm.ImplicitSourceTerm (coeff=0.0, var=None)
Bases: fipy.terms.sourceTerm.SourceTerm

The ImplicitSourceTerm represents

/ ¢S dV ~ ¢pSpVp
v

where S is the coeff value.
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25.24 nonDiffusionTerm Module

25.25 powerLawConvectionTerm Module

class fipy.terms.powerLawConvectionTerm.PowerLawConvectionTerm (coeff=1.0,

var=None)
Bases: fipy.terms.asymmetricConvectionTerm._AsymmetricConvectionTerm

The discretization for this Term is given by
[ v-@av =364,
v
f

where ¢y = asdpp + (1 — ay)pa and oy is calculated using the power law scheme. For further details see
Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =«
>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh = m)
>>> fv = FaceVariable (mesh = m)
>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)

Traceback (most recent call last):
VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0.1]1), mesh=Unifor
>>> _ ConvectionTerm (coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0.11), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm (coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)

>>> vcv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)

__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array ([[ 0., 0., 0., 0., 0., 0.,
[ 0., 0., 0., 0., 0., 0., 0.11), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1l)))

>>> _ ConvectionTerm(coeff=vfv2)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0., 0., 0., 0., 0.1,
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[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2,
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS
Parameters

* coeff : The Term*s coefficient value.

25.26 residualTerm Module

class fipy.terms.residualTerm.ResidualTerm (equation, underRelaxation=1.0)
Bases: fipy.terms.explicitSourceTerm._ExplicitSourceTerm

The ResidualTerm is a special form of explicit SourceTerm that adds the residual of one equation to another
equation. Useful for Newton’s method.

25.27 sourceTerm Module

class fipy.terms.sourceTerm.SourceTerm (coeff=0.0, var=None)
Bases: fipy.terms.cellTerm.CellTerm

Attention: This class is abstract. Always create one of its subclasses.

25.28 term Module

class fipy.terms.term.Term (coeff=1.0, var=None)
Bases: object

Attention: This class is abstract. Always create one of its subclasses.

Create a Term.
Parameters

* coeff: The coefficient for the term. A CellVariable or number. FaceVariable objects are also
acceptable for diffusion or convection terms.

RHSvector
Return the RHS vector caculated in solve() or sweep(). The cacheRHSvector() method should be called
before solve() or sweep() to cache the vector.

cacheMatrix ()
Informs solve() and sweep() to cache their matrix so that getMatrix() can return the matrix.

cacheRHSvector ()
Informs solve() and sweep() to cache their right hand side vector so that getRHSvector() can return it.

copy ()

getDefaultSolver (var=None, solver=None, *args, **kwargs)
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getMatrix (*args, **kwds)
Deprecated since version 3.0: use the mat rix property instead

getRHSvector (*args, **kwds)
Deprecated since version 3.0: use the rHSvector property instead

justErrorVector (var=None, solver=None, boundaryConditions=(), dt=1.0, underRelax-

ation=None, residualFFn=None)
Builds the 7erm‘s linear system once. This method also recalculates and returns the error as well as

applying under-relaxation.
Parameters

¢ var: The variable to be solved for. Provides the initial condition, the old value and holds
the solution on completion.

* solver: The iterative solver to be used to solve the linear system of equations. Defaults to
LinearPCGSolver for Pysparse and LinearLUSolver for Trilinos.

* boundaryConditions: A tuple of boundaryConditions.
e dr: The time step size.

* underRelaxation: Usually a value between 0 and I or None in the case of no under-
relaxation

* residualFn: A function that takes var, matrix, and RHSvector arguments used to customize
the residual calculation.

JjustErrorVector returns the overlapping local value in parallel (not the non-overlapping value).

>>> from fipy.solvers import DummySolver
>>> from fipy import x

>>> m = GridlD (nx=10)

>>> v = CellVariable (mesh=m)

>>> len(DiffusionTerm() . justErrorVector (v, solver=DummySolver ())) == m.numberOfCells
True

justResidualVector (var=None, solver=None, boundaryConditions=(), dt=None, underRelax-

ation=None, residualFn=None)
Builds the Term‘s linear system once. This method also recalculates and returns the residual as well as

applying under-relaxation.
Parameters

¢ var: The variable to be solved for. Provides the initial condition, the old value and holds
the solution on completion.

* solver: The iterative solver to be used to solve the linear system of equations. Defaults to
LinearPCGSolver for Pysparse and LinearLUSolver for Trilinos.

* boundaryConditions: A tuple of boundaryConditions.
e dr: The time step size.

* underRelaxation: Usually a value between 0 and I or None in the case of no under-
relaxation

* residualFn: A function that takes var, matrix, and RHSvector arguments used to customize
the residual calculation.

JjustResidualVector returns the overlapping local value in parallel (not the non-overlapping value).
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>>> from fipy import =

>>> m = GridlD (nx=10)
>>> v = CellVariable (mesh=m)
>>> len(DiffusionTerm() . justResidualVector (v)) == m.numberOfCells
True
matrix

Return the matrix caculated in solve() or sweep(). The cacheMatrix() method should be called before
solve() or sweep() to cache the matrix.

residualVectorAndNorm (var=None, solver=None, boundaryConditions=(), dt=None, underRe-

laxation=None, residualFn=None)
Builds the Term‘s linear system once. This method also recalculates and returns the residual as well as

applying under-relaxation.
Parameters

e var: The variable to be solved for. Provides the initial condition, the old value and holds
the solution on completion.

* solver: The iterative solver to be used to solve the linear system of equations. Defaults to
LinearPCGSolver for Pysparse and LinearLUSolver for Trilinos.

* boundaryConditions: A tuple of boundaryConditions.
* dt: The time step size.

* underRelaxation: Usually a value between O and I or None in the case of no under-
relaxation

* residualFn: A function that takes var, matrix, and RHSvector arguments used to customize
the residual calculation.

solve (var=None, solver=None, boundaryConditions=(), dt=None)
Builds and solves the Term's linear system once. This method does not return the residual. It should be
used when the residual is not required.

Parameters

¢ var: The variable to be solved for. Provides the initial condition, the old value and holds
the solution on completion.

* solver: The iterative solver to be used to solve the linear system of equations. Defaults to
LinearPCGSolver for Pysparse and LinearLUSolver for Trilinos.

* boundaryConditions: A tuple of boundaryConditions.
e dr: The time step size.

sweep (var=None, solver=None, boundaryConditions=(), dt=None, underRelaxation=None, residu-

alFn=None, cacheResidual=False, cacheError=False)
Builds and solves the Term‘s linear system once. This method also recalculates and returns the residual as

well as applying under-relaxation.
Parameters

¢ var: The variable to be solved for. Provides the initial condition, the old value and holds
the solution on completion.

* solver: The iterative solver to be used to solve the linear system of equations. Defaults to
LinearPCGSolver for Pysparse and LinearLUSolver for Trilinos.

* boundaryConditions: A tuple of boundaryConditions.

e dt: The time step size.
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* underRelaxation: Usually a value between 0 and I or None in the case of no under-
relaxation

* residualFn: A function that takes var, matrix, and RHSvector arguments, used to cus-
tomize the residual calculation.

¢ cacheResidual: If True, calculate and store the residual vector ¥ = L7 — b in the
residualVector member of Term

* cacheError: If True, use the residual vector ¥ to solve L& = 7 for the error vector €
and store it in the errorVector member of Term

25.29 test Module

25.30 transientTerm Module

class fipy.terms.transientTerm.TransientTerm (coeff=1.0, var=None)
Bases: fipy.terms.cellTerm.CellTerm

The TransientTerm represents

/ A(po) dV ~ (ppop — pPo3)Vp
v oot T At

where p is the coeff value.

The following test case verifies that variable coefficients and old coefficient values work correctly. We will solve
the following equation

8¢2_
o0k

¢ =1/ b5+ kt,

The analytic solution is given by

where ¢ is the initial value.

>>> phi0 = 1.

>>> k = 1.

>>> dt = 1.

>>> relaxationFactor = 1.5
>>> steps = 2

>>> sweeps = 8

>>> from fipy.meshes import GridlD

>>> mesh = GridlD (nx = 1)
>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable (mesh = mesh, value = phi0O, hasOld = 1)

>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.implicitSourceTerm import ImplicitSourceTerm

Relaxation, given by relaxationFactor, is required for a converged solution.

>>> eq = TransientTerm(var) == ImplicitSourceTerm(-relaxationFactor) \
+ var * relaxationFactor + k

A number of sweeps at each time step are required to let the relaxation take effect.
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>>> for step in range (steps):
var.updateOld ()
for sweep in range (sweeps) :
eqg.solve(var, dt = dt)

Compare the final result with the analytical solution.

>>> from fipy.tools import numerix
>>> print var.allclose (numerix.sqgrt(k = dt * steps + phiOxx2))
1

25.31 unaryTerm Module

25.32 upwindConvectionTerm Module

class fipy.terms.upwindConvectionTerm.UpwindConvectionTerm (coeff=1.0, var=None)
Bases: fipy.terms.abstractUpwindConvectionTerm._AbstractUpwindConvectionTerm

The discretization for this Term is given by

/V V(@) dV ~ 3 (@) s Ay
f

where ¢r = arpp + (1 — ay)pa and ay is calculated using the upwind convection scheme. For further details
see Numerical Schemes.

Create a _AbstractConvectionTerm object.

>>> from fipy import =«
>>> m = GridlD(nx = 2)
>>> cv = CellVariable (mesh = m)
>>> fv = FaceVariable (mesh = m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)

Traceback (most recent call last):
VectorCoeffError: The coefficient must be a vector value.
>>> _ ConvectionTerm(coeff = fv)

Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0.]]), mesh=Unifor
>>> _ ConvectionTerm (coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0.]]), mesh=UniformGridlD (dx=1.0, n
>>> _ ConvectionTerm(coeff = (1,))

_ ConvectionTerm (coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS
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>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)

>>> vcv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ O., 0., 0., 0., 0., 0.,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm (coeff=vfv2)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ O., 0., 0., 0., 0., 0., 0.1,

[ 0., 0., 0., 0., 0., 0., 0.]]), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))) .solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term's coefficient value.

25.33 vanlLeerConvectionTerm Module

class fipy.terms.vanLeerConvectionTerm.VanLeerConvectionTerm (coeff=1.0, var=None)

Bases: fipy.terms.explicitUpwindConvectionTerm.ExplicitUpwindConvectionTerm
Create a _AbstractConvectionTerm object.

>>> from fipy import =

>>> m = GridlD(nx = 2)

>>> cv = CellVariable (mesh m)

>>> fv = FaceVariable (mesh m)

>>> vcv = CellVariable (mesh=m, rank=1)
>>> vfv = FaceVariable (mesh=m, rank=1)
>>> _ ConvectionTerm(coeff = cv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector wvalue.
>>> _ ConvectionTerm(coeff = fv)
Traceback (most recent call last):

VectorCoeffError: The coefficient must be a vector value.

>>> _ ConvectionTerm(coeff = vcv)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array([[ 0., 0., 0.1]1), mesh=Unifor
>>> _ ConvectionTerm(coeff = vfv)

__ConvectionTerm(coeff=FaceVariable (value=array ([[ 0., 0., 0.11), mesh=UniformGridlD (dx=1.0, r
>>> _ ConvectionTerm(coeff = (1,))

__ ConvectionTerm (coeff=(1,))

>>> ExplicitUpwindConvectionTerm(coeff = (0,)) .solve(var=cv, solver=DummySolver ())

Traceback (most recent call last):

TransientTermError: The equation requires a TransientTerm with explicit convection.
>>> (TransientTerm(0.) - ExplicitUpwindConvectionTerm(coeff = (0,))) .solve(var=cv, solver=DummyS

>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = 1)) .solve(var=cv, solver=DummySolver
Traceback (most recent call last):
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VectorCoeffError: The coefficient must be a vector value.
>>> m2 = Grid2D (nx=2, ny=1)

>>> cv2 = CellVariable (mesh=m2)

>>> vcv2 = CellVariable (mesh=m2, rank=1)

>>> vfv2 = FaceVariable (mesh=m2, rank=1)

>>> _ ConvectionTerm (coeff=vcv2)
__ConvectionTerm(coeff=_ArithmeticCellToFaceVariable (value=array ([[ 0., 0., 0., 0., 0., 0.,

[ 0., 0., 0., 0., 0., 0., 0.]]1), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> _ ConvectionTerm(coeff=vfv2)

__ ConvectionTerm(coeff=FacevVariable (value=array([([ 0., ©0., O0., 0., 0., 0., 0.1,

[ 0., 0., 0., 0., 0., 0., 0.]]1), mesh=UniformGrid2D (dx=1.0, nx=2, dy=1.0, ny=1)))
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = ((0,), (0,)))) .solve(var=cv2, solver=
>>> (TransientTerm() - ExplicitUpwindConvectionTerm(coeff = (0,0))).solve(var=cv2, solver=DummyS

Parameters

* coeff : The Term's coefficient value.
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tests Package

26.1 tests Package

unit testing scripts no chapter heading

26.2 doctestPlus Module

fipy.tests.doctestPlus.execButNoTest (name="__main__")

fipy.tests.doctestPlus.register_skipper (flag, test, why, skipWarning=True)
Create a new doctest option flag for skipping tests

Parameters flag : str
Name of the option flag
test : function
A function which should return True if the test should be run
why : str

Explanation for why the test was skipped (to be used in a string “Skipped
%% (count)d doctest examples because %% (why)s”

skipWarning : bool
Whether or not to report on tests skipped by this flag (default True)

fipy.tests.doctestPlus.report_skips ()
Print out how many doctest examples were skipped due to flags

fipy.tests.doctestPlus.testmod (m=None, name=None, globs=None, verbose=None,
report=True, optionflags=0, extraglobs=None,

raise_on_error=False, exclude_empty=False)
Test examples in the given module. Return (#failures, #tests).

Largely duplicated from doctest.testmod (), butusing _SelectiveDocTestParser.

Test examples in docstrings in functions and classes reachable from module m (or the current module if m is not
supplied), starting with m.__doc__.

Also test examples reachable from dict m.__test__ if it exists and is not None. m.__test__ maps names to
functions, classes and strings; function and class docstrings are tested even if the name is private; strings are
tested directly, as if they were docstrings.

Return (#failures, #tests).
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See help(doctest) for an overview.
Optional keyword arg “name” gives the name of the module; by default use m.__name__.

Optional keyword arg “globs” gives a dict to be used as the globals when executing examples; by default, use
m.__dict__. A copy of this dict is actually used for each docstring, so that each docstring’s examples start with
a clean slate.

Optional keyword arg “extraglobs” gives a dictionary that should be merged into the globals that are used to
execute examples. By default, no extra globals are used. This is new in 2.4.

Optional keyword arg “verbose” prints lots of stuff if true, prints only failures if false; by default, it’s true iff
“-v” is in sys.argv.

Optional keyword arg “report” prints a summary at the end when true, else prints nothing at the end. In verbose
mode, the summary is detailed, else very brief (in fact, empty if all tests passed).

Optional keyword arg “optionflags” or’s together module constants, and defaults to 0. This is new in 2.3.
Possible values (see the docs for details):

DONT_ACCEPT_TRUE_FOR_1 DONT_ACCEPT_BLANKLINE NORMALIZE_WHITESPACE
ELLIPSIS SKIP IGNORE_EXCEPTION_DETAIL REPORT_UDIFF REPORT_CDIFF RE-
PORT_NDIFF REPORT_ONLY_FIRST_FAILURE

as well as FiPy’s flags

GMSH SCIPY TVTK SERIAL PARALLEL PROCESSOR_0 PROCESSOR_0_OF_2 PROCES-
SOR_1_OF_2 PROCESSOR_0_OF_3 PROCESSOR_1_OF_3 PROCESSOR_2_OF_3

Optional keyword arg “raise_on_error” raises an exception on the first unexpected exception or failure. This
allows failures to be post-mortem debugged.

26.3 lateImportTest Module

26.4 testBase Module

26.5 testClass Module

26.6 testProgram Module
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tools Package

27.1 tools Package

class fipy.tools.PhysicalField (value, unit=None, array=None)
Bases: object

Physical field or quantity with units
Physical Fields can be constructed in one of two ways:

*PhysicalField(*value*, *unit*), where *value* is a number of arbitrary type and *unit* is a string contain-
ing the unit name

>>> print PhysicalField(value = 10., unit = 'm’)
10.0 m

*PhysicalField(*string*), where *string* contains both the value and the unit. This form is provided to
make interactive use more convenient

>>> print PhysicalField(value = "10. m")
10.0 m

Dimensionless quantities, with a unit of 1, can be specified in several ways

>>> print PhysicalField(value = "1")

1.0 1

>>> print PhysicalField(value = 2., unit = " ")
2.0 1

>>> print PhysicalField(value = 2.)

2.0 1

Physical arrays are also possible (and are the reason this code was adapted from Konrad Hinsen‘s original
PhysicalQuantity). The value can be a Numeric array:

>>> a = numerix.array(((3.,4.),(5.,6.)))
>>> print PhysicalField(value = a, unit = "m")
[[ 3. 4.]

[ 5. 6.]]1 m

or a tuple:
>>> print PhysicalField(value = ((3.,4.),(5.,6.)), unit = "m")
[[ 3. 4.]

[ 5. 6.]] m

or as a single value to be applied to every element of a supplied array:
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>>> print PhysicalField(value = 2., unit = "m", array = a)
[r 2. 2.1
[ 2. 2.]1]l m

Every element in an array has the same unit, which is stored only once for the whole array.

add (other)

Add two physical quantities, so long as their units are compatible. The unit of the result is the unit of the
first operand.

>>> print PhysicalField(10., "km’) + PhysicalField(10., ’'m’)
10.01 km

>>> print PhysicalField(10., "km’) + PhysicalField(10., "J")
Traceback (most recent call last):

TypeError: Incompatible units

allclose (other, atol=None, rtol=1e-08)

This function tests whether or not self and other are equal subject to the given relative and absolute
tolerances. The formula used is:

| self - other | < atol + rtol % | other |

This means essentially that both elements are small compared to atol or their difference divided by other‘s
value is small compared to rtol.

allequal (other)
This function tests whether or not self and other are exactly equal.

arccos ()
Return the inverse cosine of the PhysicalField in radians

>>> print PhysicalField(0) .arccos () .allclose("1.57079632679 rad")
1

The input PhysicalField must be dimensionless

>>> print numerix.round_ (PhysicalField("1l m").arccos (), 6)
Traceback (most recent call last):

TypeError: Incompatible units

arccosh ()
Return the inverse hyperbolic cosine of the PhysicalField

>>> print numerix.allclose (PhysicalField(2) .arccosh{(),
1.31695789692)

The input PhysicalField must be dimensionless

>>> print numerix.round_ (PhysicalField("1. m").arccosh(), 6)
Traceback (most recent call last):

TypeError: Incompatible units

arcsin ()
Return the inverse sine of the PhysicalField in radians
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>>> print PhysicalField(l) .arcsin().allclose("1.57079632679 rad")
1

The input PhysicalField must be dimensionless

>>> print numerix.round_ (PhysicalField ("1 m").arcsin(), 6)
Traceback (most recent call last):

TypeError: Incompatible units

arctan ()
Return the arctangent of the PhysicalField in radians

>>> print numerix.round_ (PhysicalField(l) .arctan(), 6)
0.785398

The input PhysicalField must be dimensionless

>>> print numerix.round_ (PhysicalField("1l m").arctan(), 6)
Traceback (most recent call last):

TypeError: Incompatible units

arctan2 (other)
Return the arctangent of self divided by other in radians

>>> print numerix.round_ (PhysicalField(2.) .arctan2 (PhysicalField(5.)), 6)
0.380506

The input PhysicalField objects must be in the same dimensions

>>> print numerix.round_ (PhysicalField(2.54, "cm").arctan2(PhysicalField (1., "inch")), 6)
0.785398
>>> print numerix.round_ (PhysicalField(2.) .arctan2 (PhysicalField("5. m")), 6)

Traceback (most recent call last):
TypeError: Incompatible units

arctanh ()
Return the inverse hyperbolic tangent of the PhysicalField

>>> print PhysicalField(0.5) .arctanh/()
0.549306144334

The input PhysicalField must be dimensionless

>>> print numerix.round_ (PhysicalField ("1l m").arctanh(), 6)
Traceback (most recent call last):

TypeError: Incompatible units

ceil ()
Return the smallest integer greater than or equal to the PhysicalField.

>>> print PhysicalField(2.2,"m") .ceil ()
3.0 m

conjugate ()
Return the complex conjugate of the PhysicalField.
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>>> print PhysicalField (2.2 - 37,"ohm").conjugate() == PhysicalField(2.2 + 37,"ohmn")
True

convertToUnit (unit)
Changes the unit to unit and adjusts the value such that the combination is equivalent. The new unit is by
a string containing its name. The new unit must be compatible with the previous unit of the object.

>>> e = PhysicalField(’2.7 HartreexNav’)
>>> e.convertToUnit ('kcal/mol”)

>>> print e

1694.27557621 kcal/mol

copy ()
Make a duplicate.
>>> a = PhysicalField (1, unit = ’“inch’)

>>> b = a.copy()

The duplicate will not reflect changes made to the original

>>> a.convertToUnit ('cm’)
>>> print a

2.54 cm

>>> print b

1 inch

Likewise for arrays

>>> a = PhysicalField(numerix.array((0,1,2)), unit = 'm’)
>>> b = a.copy()

>>> a[0] = 3

>>> print a

[31 2] m

>>> print b

[01 2] m

cos ()
Return the cosine of the PhysicalField

>>> print numerix.round_ (PhysicalField (2+«numerix.pi/6,"rad") .cos (), 6)
0.5

>>> print numerix.round_ (PhysicalField(60.,"deg").cos (), 6)

0.5

The units of the PhysicalField must be an angle

>>> PhysicalField(60.,"m") .cos ()
Traceback (most recent call last):

TypeError: Incompatible units

cosh ()
Return the hyperbolic cosine of the PhysicalField

>>> PhysicalField(0.) .cosh()
1.0

The units of the PhysicalField must be dimensionless
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>>> PhysicalField(60.,"m") .cosh()
Traceback (most recent call last):

TypeError: Incompatible units

divide (other)
Divide two physical quantities. The unit of the result is the unit of the first operand divided by the unit of
the second.

>>> print PhysicalField(10., 'm’) / PhysicalField (2., ’'s’)
5.0 m/s

As a special case, if the result is dimensionless, the value is returned without units, rather than with a
dimensionless unit of /. This facilitates passing physical quantities to packages such as Numeric that
cannot use units, while ensuring the quantities have the desired units

>>> print (PhysicalField(l., ’“inch’)
C.. / PhysicalField(l., 'mm’))
25.4
dot (other)
Return the dot product of self with other. The resulting unit is the product of the units of self and other.
) " m n )

>>> v = PhysicalField(((5.,6.),(7.,8.)),
( ,4.)), "m").dot (v)

’
>>> print PhysicalField(((1.,2.), (3.
[ 26. 44 .] mx*2

floor ()
Return the largest integer less than or equal to the PhysicalField.

>>> print PhysicalField(2.2,"m") .floor ()
2.0 m

getNumericValue (*args, **kwds)
Deprecated since version 3.0: use the numericValue property instead

getShape ( *args, **kwds)
Deprecated since version 3.0: use the shape property instead

getUnit (*args, **kwds)
Deprecated since version 3.0: use the unit property instead

getsctype (default=None)
Returns the Numpy sctype of the underlying array.

>>> PhysicalField(l, ’'m’).getsctype() == numerix.NUMERIX.obj2sctype (numerix.array (1))

True

>>> PhysicalField(l., ’'m’).getsctype() == numerix.NUMERIX.obj2sctype (numerix.array(l.))
True

>>> PhysicalField((1l,1.), 'm’).getsctype() == numerix.NUMERIX.obj2sctype (numerix.array((l.,
True

inBaseUnits ()
Return the quantity with all units reduced to their base SI elements.

>>> e = PhysicalField(’2.7 HartreexNav’)
>>> print e.inBaseUnits () .allclose ("7088849.01085 kgsmx*2/s*%x2/mol™")
1

inDimensionless ()
Returns the numerical value of a dimensionless quantity.
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>>> print PhysicalField(((2.,3.),(4.,5.))) .inDimensionless{()
[[ 2. 3.]
[ 4. 5.]]

It’s an error to convert a quantity with units

>>> print PhysicalField(((2.,3.),(4.,5.)),"m") . .inDimensionless ()
Traceback (most recent call last):

TypeError: Incompatible units

inRadians ()

Converts an angular quantity to radians and returns the numerical value.

>>> print PhysicalField(((2.,3.),(4.,5.)),"rad").inRadians ()
[[ 2. 3.]

[ 4. 5.]]
>>> print PhysicalField(((2.,3.),(4.,5.)),"deg").inRadians ()
[[ 0.03490659 0.05235988]

[ 0.06981317 0.08726646]]

As a special case, assumes a dimensionless quantity is already in radians.

>>> print PhysicalField(((2.,3.),(4.,5.))) .inRadians()
[[ 2. 3.]
[ 4. 5.1]

It’s an error to convert a quantity with non-angular units

>>> print PhysicalField(((2.,3.),(4.,5.)),"m").inRadians ()
Traceback (most recent call last):

TypeError: Incompatible units

inSIUnits ()

Return the quantity with all units reduced to SI-compatible elements.

>>> e = PhysicalField(’2.7 HartreexNav’)
>>> print e.inSIUnits () .allclose("7088849.01085 kgsm#*2/s*x*2/mol™)
1

inUnitsOf (*units)

Returns one or more PhysicalField objects that express the same physical quantity in different units. The
units are specified by strings containing their names. The units must be compatible with the unit of the
object. If one unit is specified, the return value is a single PhysicalField.

>>> freeze = PhysicalField(’0 degC’)
>>> print freeze.inUnitsOf ('degF’) .allclose("32.0 degE™")
1

If several units are specified, the return value is a tuple of PhysicalField instances with with one element per
unit such that the sum of all quantities in the tuple equals the the original quantity and all the values except
for the last one are integers. This is used to convert to irregular unit systems like hour/minute/second. The
original object will not be changed.
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>>> t = PhysicalField(314159., ’'s’)

>>> print numerix.allclose([e.allclose(v) for (e, v) in zip(t.inUnitsOf(’'d’,’h’,’min’,’s’),
["3.0 4, 715.0 h’, "15.0 min’,

True)

isCompatible (unit)

itemset (value)
Assign the value of a scalar array, performing appropriate conversions.

>>> a = PhysicalField(4.,"m")
>>> a.itemset (PhysicalField ("6 ft"))
>>> print a.allclose("1.8288 m")
1
>>> a = PhysicalField(((3.,4.),(5.,6.)),"m")
>>> try:
a.itemset (PhysicalField ("6 ft"))
except IndexError:
# NumPy 1.7 has changed the exception type
.. raise ValueError ("can only place a scalar for an array of size 1")
Traceback (most recent call last):

ValueError: can only place a scalar for an array of size 1
>>> a.itemset (PhysicalField ("2 min"))
Traceback (most recent call last):

TypeError: Incompatible units

itemsize

log ()
Return the natural logarithm of the PhysicalField

>>> print numerix.round_ (PhysicalField (10).log (), 6)
2.302585

The input PhysicalField must be dimensionless

>>> print numerix.round_ (PhysicalField("1. m").log(), 6)
Traceback (most recent call last):

TypeError: Incompatible units

1logl0 ()
Return the base-10 logarithm of the PhysicalField
>>> print numerix.round_ (PhysicalField(10.).logl0O(), 6)
1.0

The input PhysicalField must be dimensionless

>>> print numerix.round_ (PhysicalField("1. m").loglO(), 6)
Traceback (most recent call last):

TypeError: Incompatible units

multiply (other)
Multiply two physical quantities. The unit of the result is the product of the units of the operands.
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>>> print PhysicalField(10., ’'N’) % PhysicalField(10., 'm’)
100.0 m+*N

As a special case, if the result is dimensionless, the value is returned without units, rather than with a
dimensionless unit of /. This facilitates passing physical quantities to packages such as Numeric that
cannot use units, while ensuring the quantities have the desired units.

>>> print (PhysicalField(10., ’s’) = PhysicalField(2., "Hz’))
20.0

numericValue
Return the PhysicalField without units, after conversion to base SI units.

>>> print numerix.round_ (PhysicalField("1l inch") .numericValue, 6)
0.0254

put (indices, values)
put is the opposite of fake. The values of self at the locations specified in indices are set to the correspond-
ing value of values.

The indices can be any integer sequence object with values suitable for indexing into the flat form of self.
The values must be any sequence of values that can be converted to the typecode of self.

>>> f = PhysicalField((1.,2.,3.),"m")

>>> f.put((2,0), PhysicalField((2.,3.),"inch"))
>>> print f

[ 0.0762 2. 0.0508] m

The units of values must be compatible with self.

>>> f.put (1, PhysicalField(3,"kg"))
Traceback (most recent call last):

TypeError: Incompatible units

ravel ()

reshape (shape)
Changes the shape of self to that specified in shape

>>> print PhysicalField((1.,2.,3.,4.),"m") .reshape((2,2))
(r 1. 2.]
[ 3. 4.]] m

The new shape must have the same size as the existing one.

>>> print PhysicalField((1.,2.,3.,4.),"m") .reshape((2,3))
Traceback (most recent call last):

ValueError: total size of new array must be unchanged
setUnit (*args, **kwds)
Deprecated since version 3.0: use the unit property instead

shape
Tuple of array dimensions.

sign ()
Return the sign of the quantity. The unit is unchanged.
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>>> from fipy.tools.numerix import sign
>>> print sign(PhysicalField (((3.,-2.),(-1.,4.)), 'm"))
(0 1. -1.1]

[-1. 1.1]

sin ()
Return the sine of the PhysicalField

>>> print PhysicalField (numerix.pi/6,"rad") .sin()
0.5

>>> print PhysicalField(30.,"deg") .sin()

0.5

The units of the PhysicalField must be an angle

>>> PhysicalField (30.,"m") .sin()
Traceback (most recent call last):

TypeError: Incompatible units
sinh ()
Return the hyperbolic sine of the PhysicalField

>>> PhysicalField(0.) .sinh ()
0.0

The units of the PhysicalField must be dimensionless

>>> PhysicalField(60.,"m") .sinh ()
Traceback (most recent call last):

TypeError: Incompatible units
sqgrt ()
Return the square root of the PhysicalField

>>> print PhysicalField("100. m#*2") .sqgrt ()
10.0 m

The resulting unit must be integral

>>> print PhysicalField("100. m") .sqgrt ()
Traceback (most recent call last):

TypeError: Illegal exponent

subtract (other)
Subtract two physical quantities, so long as their units are compatible